Bionic Technology Revitalizes Native Baroreflex Function in Rats With Baroreflex Failure

Takayuki Sato, MD; Toru Kawada, MD; Masaru Sugimachi, MD; Kenji Sunagawa, MD

Background—We developed a bionic technology for the treatment of baroreflex failure and tested its efficacy in restoration of arterial pressure against head-up tilt (HUT) in rats with baroreflex failure.

Methods and Results—The bionic baroreflex system (BBS) was a negative feedback system controlled by a computer, the artificial vasomotor center. It sensed systemic arterial pressure (SAP) through a micromanometer placed in the aortic arch and automatically computed the frequency of a pulse train to stimulate sympathetic efferent nerves. We selected the celiac ganglion as the sympathetic vasomotor interface. To make this system bionic, the operational rule of the artificial vasomotor center (H_{BRP→STM}; BRP indicates baroreceptor pressure; STM, electrical stimulation) was actively matched to that of the native center. First, we identified the open-loop transfer functions of the native baroreflex control of SAP (H_{native}) and the response of SAP to electrical stimulation of the celiac ganglion (H_{STM→SAP}). We computed H_{BRP→STM} from H_{native}/H_{STM→SAP} and transplanted the operational rule into the computer. In 10 rats with baroreflex failure, we evaluated the performance of the BBS during rapid hypotension induced by HUT. Abrupt HUT dropped SAP by 34±6 mm Hg in 2 seconds and by 52±5 mm Hg in 10 seconds. During real-time execution of the BBS, on the other hand, the fall in SAP was 21±5 mm Hg at 2 seconds and 15±6 mm Hg at 10 seconds after HUT. These arterial responses controlled by the BBS were indistinguishable from those by the native baroreflex.

Conclusions—We concluded that the BBS revitalized the native baroreflex function in rats with baroreflex failure.

(Circulation. 2002;106:730-734.)

Key Words: baroreceptors • blood pressure • dynamics • electrical stimulation • nervous system, sympathetic

The most unique function of arterial baroreflex is to quickly and sufficiently attenuate the effect of an external disturbance on arterial pressure.1–3 Without such quick compensation, the simple act of standing would cause a fall in arterial pressure responsible for perfusing the brain, resulting potentially in loss of consciousness. Therefore, the functional restoration of dynamic as well as static properties of the arterial baroreflex is essential to patients with baroreflex failure.4–6

Neurological disorders such as Shy-Drager syndrome,7–10 baroreceptor deafferentation,11,12 and traumatic spinal cord injuries13,14 result in central baroreflex failure and a severely impaired quality of life as a consequence. In Shy-Drager syndrome, idiopathic neurodegeneration affects the vasomotor center in the brain stem; however, peripheral sympathetic neurons are assumed to be relatively spared and able to release norepinephrine in response to excitatory outflow. In spinal cord injuries, sympathetic traffic to preganglionic neurons can be interrupted permanently. In either case, peripheral sympathetic neurons have the ability to release norepinephrine in response to direct electrical stimuli.10 Unfortunately, although various interventions such as salt loading,15,16 cardiac pacing,17,18 and adrenergic agonists19,20 have been attempted to treat orthostatic hypotension, most patients nevertheless remain bedridden for a long time. The reason for this unfortunate outcome is that such interventions can neither restore nor reproduce the functioning of the native vasomotor center.

In our previous study,21 we developed a framework for identifying an operational rule of the vasomotor center and a prototype of a bionic baroreflex system in rats. The bionic system is an artificial device for functional replacement of a physiological system able to mimic its static and dynamic characteristics. The objective of the present study is to evaluate the efficacy of our bionic system in an animal model of central baroreflex failure.

Methods

Theoretical Considerations

Provided in Figure 1A is a simplified diagram representing characteristics of the native baroreflex system. The vasomotor center responds by modulating its command over sympathetic vasomotor nerve activity according to changes in baroreceptor pressure (BRP). Efferent sympathetic nerve activity in turn governs the functional

Received March 13, 2002; revision received May 8, 2002; accepted May 9, 2002.

From the Department of Cardiovascular Dynamics (T.S., T.K., M.S., K.S.), National Cardiovascular Center Research Institute, Suita, Japan; and the Department of Cardiovascular Control (T.S.), Kochi Medical School, Nankoku, Japan. Correspondence to Dr Takayuki Sato, Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi 783-8505, Japan. E-mail tacatsato-kochimed@umin.ac.jp

© 2002 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org

DOI: 10.1161/01.CIR.0000024101.77521.4D

730
properties of various effectors, such as resistive and capacitive vessels, which themselves exert direct influence over systemic arterial pressure (SAP). Although the effect of a postural change is added to SAP as a pressure disturbance, \(P_d \), the change in SAP, is attenuated to \(P_d / (1 + H_{\text{STM}}) \). Here \(H_{\text{STM}} \) is the transfer function\(^{22,23}\) of the native baroreflex system.

On the other hand, in the bionic baroreflex system (BBS), BRP is sensed by a catheter-tipped micromanometer placed in the aortic arch and fed into a computer that functions as an artificial vasomotor center. On the basis of measured changes in SAP, the artificial vasomotor center executes real-time operations that determine the frequency of electrical stimulation (STM) necessary for compensatory adjustment of SAP to the desired level and then commands an artificial vasomotor center to operate in the BBS. According to the following procedures (Figure 1B), we can identify the transfer function of the native baroreflex system.

We first analyze under open-loop conditions the BRP-SAP dynamic properties characterizing \(H_{\text{STM}} \) by using a white-noise identification method. Next, we identify the open-loop transfer function \(H_{\text{STM}} \) from STM to SAP. The determination of \(H_{\text{STM}} \) enables us by a simple process of division, \(H_{\text{STM}} / H_{\text{STM}} \), to calculate the open-loop transfer function required for the artificial vasomotor center of the BBS, that is, \(H_{\text{STM}} \). The transfer function \(H_{\text{STM}} \) represents the operating rule characterizing quantitatively the dynamics of how the artificial vasomotor center should operate in its stimulation of the vasomotor sympathetic nerves to mimic the native baroreflex. A. Native Baroreflex

\[
\begin{align*}
\text{A. Native Baroreflex} \\
\text{P}_d & \rightarrow H_{\text{Native}} \rightarrow \text{SAP}
\end{align*}
\]

B. Bionic Baroreflex

\[
\begin{align*}
\text{B. Bionic Baroreflex} \\
\text{H}_{\text{BRP-SYM}} \rightarrow \text{H}_{\text{STM}} \rightarrow \text{SAP}
\end{align*}
\]

Figure 1. Block diagrams of native (A) and bionic (B) baroreflex systems. In the native baroreflex system, a change in SAP induced by external disturbance in pressure \(P_d \) is sensed by arterial baroreceptors. Change in BRP initiates reflex change in vasomotor sympathetic outflow and is thereby buffered. In the bionic baroreflex system, a catheter-tipped micromanometer functions as the baroreceptor, a computer as the vasomotor center, and an electrical stimulator as the preganglionic sympathetic neuron. \(H_{\text{Native}} \) denotes the open-loop transfer function of the native baroreflex system. \(H_{\text{STM}} \) and \(H_{\text{STM}} \) are the open-loop transfer functions from BRP to the frequency of STM and from STM to SAP, respectively. Overall open-loop transfer function of the bionic baroreflex system is given by \(\text{H}_{\text{STM}} \times \text{H}_{\text{STM}} \).

Data Recording for Estimation of \(H_{\text{STM}} \)

To estimate the open-loop transfer function \(H_{\text{STM}} \), we first measured arterial baroreceptor response to the opening \(100 \) to \(120 \) mm Hg with a white bandwidth up to \(2 \) Hz by using the servo-controlled pump system. While the random perturbation was given for an hour, the electrical signals of BRP and SAP were first low-pass–filtered with antialiasing filters having a cutoff frequency of \(50 \) Hz (\(\sim 3 \) dB) and an attenuation slope of \(80 \) dB per decade and then digitized at a rate of \(100 \) Hz by means of an analog-to-digital converter.

Data Recording for Estimation of \(H_{\text{STM}} \)

To estimate the open-loop transfer function \(H_{\text{STM}} \), we randomly changed STM between \(0 \) to \(20 \) Hz with white noise with a bandwidth up to \(2 \) Hz while BRP was kept at a constant pressure of \(120 \) mm Hg. The pulse width of the stimulus was fixed at \(2 \) ms. The stimulation voltage was adjusted for each animal to produce a pressor response of \(40 \) mm Hg at \(10 \) Hz. This resulted in an average amplitude of \(4.2 \pm 0.3 \) (mean \(\pm \)SD) V. While the random perturbation was given for \(1 \) hour, STM and SAP were digitized at a rate of \(100 \) Hz.

Estimation of Transfer Function

The transfer function \(H_{\text{STM}} \), from input \(x \) to output \(y \), was estimated using the fast Fourier transform algorithm\(^{22,23,28}\). The digitized data of \(x \) and \(y \) were sampled at \(2 \) Hz after a moving average to avoid aliasing. The time series of each data were divided into \(50 \) segments of \(256 \) points each, with \(128 \) points of overlap between segments. To suppress spectral leakage, we applied a Hann window to each segment and then computed the raw autospectra of \(x \) and \(y \) and the raw cross spectrum between the two. To reduce an error in estimating the spectrum, we calculated the ensemble average of \(50 \) raw spectra. Finally, we computed the transfer function over the frequency range of \(0.008 \) to \(1 \) Hz as follows:

\[
S_{xy} = H_{\text{STM}} S_{xy} \text{ } S_{xy} \text{'},
\]

where \(S_{xy} \) is the ensemble autospectrum of \(x \) and \(y \), \(S_{xy} \) is the ensemble cross spectrum of \(x \) and \(y \), \(H_{\text{STM}} \) is, in general, a complex quantity and is therefore expressible in polar form as
A. Transfer Function

Figure 2. Open-loop transfer function (A) required for artificial vasomotor center of the bionic baroreflex system and step response (B) computed from transfer function. Data are expressed as mean±SD for 10 rats. See text for explanation.

B. Step Response

![Step Response Graph](image)

\[H_{\text{y}_x} = |H_{\text{y}_x}| \exp\{j\phi_{\text{y}_x}\}, \]

where \(\beta = -1 \), and \(|H_{\text{y}_x}| \) and \(\phi_{\text{y}_x} \) are the gain and phase of the transfer function, respectively. The squared coherence function, a measure of linear dependence between \(x \) and \(y \), was estimated with the following equation:

\[\text{coh}_{xy} = \frac{|S_{xy}|^2}{S_{xx}S_{yy}} \]

where \(S_{xy} \) is the ensemble autospectrum of \(y \).

Implantation of \(H_{\text{BRP} \rightarrow \text{STM}} \) Into BBS

The open-loop transfer function required for the artificial vasomotor center, \(H_{\text{BRP} \rightarrow \text{STM}} \), was determined by a simple process of division, \(H_{\text{BRP}/\text{STM} \rightarrow \text{STM}} \). To make the BBS computer operate in real time as the artificial vasomotor center, we programmed the computer to automatically calculate instantaneous STM in response to instantaneous BRP change according to a convolution algorithm:

\[\text{STM}(t) = \int_0^\infty h(\tau) \cdot \text{BRP}(t-\tau) d\tau \]

where \(h(t) \) is an impulse response function computed by an inverse Fourier transform of \(H_{\text{BRP} \rightarrow \text{STM}} \).

Head-Up Tilt Tests

We restrained the rat on a custom-made tilt table. To evaluate the efficacy of the BBS against orthostatic hypotension caused by central baroreflex failure, we measured SAP responses of each rat to head-up tilting (HUT) under 3 experimental conditions. For each animal, 3 trials of measurement under each condition were made in random order.

First, to mimic orthostatic hypotension in central baroreflex failure, we kept BRP constant at the same level as SAP in a supine position before and after HUT. We referred to this condition as the model of central baroreflex failure.

Second, to observe the effect of native baroreflex function, we closed the native baroreflex loop. The laboratory computer in real time commanded the power amplifier to make carotid sinus BRP identical with SAP by means of a digital-to-analog converter while digitizing SAP at a rate of 2 kHz through the analog-to-digital converter.

Third, to evaluate the efficacy of the BBS, we activated the BBS in the model of central baroreflex failure.

Statistical Analysis

The SAP responses to head-up tilt tests were analyzed by a mixed model of ANOVA. A post hoc analysis for multiple comparisons was performed by a Scheffé procedure. Differences were considered significant at \(P < 0.05 \). Values are expressed as mean±SD.

Results

Shown in Figure 2A are the averaged transfer functions for the artificial vasomotor center \(H_{\text{BRP} \rightarrow \text{STM}} \) for 10 rats. The gain gradually increased \(\approx 2 \)-fold with input frequencies. The phase spectrum showed that the input-output relation was out of phase. These characteristics were also expressed in the time-domain analysis (Figure 2B). The initial overshoot response to unit step input was found.

A representative example of the results of head-up tests showed the performance of the BBS (Figure 3). While BRP was kept constant at the same level of supine SAP, HUT
produced a rapid progressive fall in SAP by 40 mm Hg in only 2 seconds. By contrast, while the BBS was activated, it automatically computed STM and appropriately stimulated the sympathetic nerves to quickly and effectively attenuate the SAP drop, as if the native baroreflex function had been restored almost perfectly. In addition, the BBS automatically mimicked the low-frequency oscillation of SAP by the oscillatory change at \(\approx 4 \) seconds in STM.

Figure 4 summarizes the results obtained from 10 rats, demonstrating effectiveness of the BBS performance in buffering SAP fall in response to HUT. In the model of central baroreflex failure, HUT produced a rapid progressive hypotension. However, while the BBS was activated, the time courses of the SAP responses were found to be similar to those of the native baroreflex system (Figure 4A). To make a statistical comparison of the SAP responses under the three experimental conditions, we analyzed the SAP changes before and after HUT. In the model of central baroreflex failure, abrupt HUT reduced SAP by \(34 \pm 6 \) mm Hg in 2 seconds and by \(52 \pm 5 \) mm Hg in 10 seconds (Figure 4B). During real-time execution of the BBS, on the other hand, the fall in SAP was \(21 \pm 5 \) mm Hg at 2 seconds and \(15 \pm 6 \) mm Hg at 10 seconds after HUT. Such an SAP response to HUT during the real-time execution of the BBS was statistically indistinguishable from that during functioning of the native baroreflex.

Discussion

Baroreflex Function in Head-Up Tilting

Our experimental preparations for alternating between open-loop and closed-loop conditions of the baroreflex system even after isolation of baroreceptor regions and for servocontrolling BRP at any level allowed us to quantitatively evaluate the native baroreflex function in each animal. Although the primary purpose of the present study was to evaluate the efficacy of the BBS in restoring SAP against orthostatic hypotension in the model of central baroreflex failure, our results, as a byproduct, highlighted the quickness and effectiveness of native baroreflex function in buffering the effect of HUT on SAP.

Our previous study\(^6\) revealed that the effectiveness of baroreflex in attenuation of the effect of external disturbance depends on the operating point of the baroreflex system before the disturbance. Therefore, it would be difficult to evaluate the open-loop gain of the baroreflex system for attenuation of the effect of HUT on SAP by open-loop approaches such as baroreceptor deafferentation and autonomic blockade. Because baroreceptor deafferentation elevates and autonomic blockade lowers the baseline level of SAP at supine, the operating point of the baroreflex system could deviate from a physiological range. On the other hand, in the present study, the predisturbance operating point was kept at the equal level between open-loop and closed-loop conditions. From Figure 4B and the following equation, the open-loop gain \(G \) was estimated to be \(\approx 2.5 \).

\[
G = \frac{\Delta SAP_{open}}{\Delta SAP_{closed}} - 1
\]

where \(\Delta SAP_{open} \) and \(\Delta SAP_{closed} \) are the SAP changes produced by HUT under open-loop and closed-loop conditions, respectively. The estimate of the open-loop gain for attenuation of the effect of HUT on SAP was consistent with our previous results\(^6\)--\(^9\) of the maximum gain estimated from the BRP-SAP relation under the open-loop conditions. Therefore, the present study supports our previous conclusion\(^6\) that the arterial baroreflex functioning in a supine position is optimized in terms of gain and displays its best ability to stabilize arterial pressure against an external disturbance.

A recent study by Furlan et al\(^{29}\) indicated that low-frequency (\(\approx 0.1 \) Hz) oscillatory patterns of sympathetic neural discharge and SAP are enhanced during HUT in humans. The low-frequency oscillations at 0.2 to 0.6 Hz in rats is known to correspond to those at 0.1 Hz in humans.\(^{30}\) Interestingly, as shown in Figure 3, oscillatory changes at 0.25 Hz were found in STM and SAP during bionic baroreflex as well as in SAP during native baroreflex but not in SAP during no baroreflex. Therefore, the baroreflex feedback mechanism would be important in the genesis of such a physiological oscillation of SAP at the low frequency. To clarify a detailed mechanism for the genesis of the low-
frequency oscillation of SAP, however, more systematic and quantitative studies are needed.

Clinical Implications

Two important challenges accompany the prospect of future development of the BBS for central baroreflex failure: (1) Hardware for clinical use is required, for example, a pressure sensor, an electrical stimulator, and stimulating electrodes; (2) A standardized software paradigm prescribing precisely how the bionic vasomotor center should determine STM in response to changes in SAP needs to be established. Fortunately, certain difficulties posed by these challenges have already been addressed in other areas of clinical practice to some degree and may be readily adaptable for use with the BBS. For example, a tonometer has been developed as a noninvasive continuous monitor of SAP. Implantable pulse generators such as cardiac pacemakers can serve as permanent electrical stimulators. Also, implantable wire leads for nerve stimulation and epidural catheters for spinal stimulation have been approved for the long-term treatment of some neurological disorders and for the chronic therapy of pain control. Finally, we could confirm the efficacy of the BBS even though the present data were obtained from experimental animals and therefore we enthusiastically affirm not only that we can but that we should develop the BBS as a new therapeutic modality for treatment of severe orthostatic intolerance in central baroreflex failure such as Shy-Drager syndrome, baroreceptor deafferentation, and traumatic spinal-cord injuries in future.

Limitations

The vasomotor center of the arterial baroreflex is affected by other autonomic centers such as respiratory centers and higher-order centers such as the limbic-hypothalamic systems and also receives various afferents such as cardiopulmonary receptors. Anesthetic agents used in the present study and artificial ventilation could also affect the dynamic properties of arterial baroreflex. In the present study, we ignored these effects. Thus, further investigation is needed for clarifying the native baroreflex function and developing the truly “bionic” baroreflex system.

Acknowledgments

This study was supported by research grants from Uehara Memorial Foundation, Suzuken Memorial Foundation, and Tateisi Science and Technology Foundation.

References

Bionic Technology Revitalizes Native Baroreflex Function in Rats With Baroreflex Failure
Takayuki Sato, Toru Kawada, Masaru Sugimachi and Kenji Sunagawa

Circulation. 2002;106:730-734; originally published online July 15, 2002;
doi: 10.1161/01.CIR.0000024101.77521.4D
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/106/6/730

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/