Clinical Correlates and Reference Intervals for Pulmonary Artery Systolic Pressure Among Echocardiographically Normal Subjects

To the Editor:

We read with great interest the article by McQuillan et al1 describing the clinical and echocardiographic correlates and range of pulmonary artery systolic pressure (PASP) in echocardiographically normal subjects. This subject has garnered renewed interest of late with the increasing prevalence of obesity, the high use of anorectic agents, and their subsequent effect on the development of pulmonary hypertension.2 Additionally, with the improvements in echocardiography, our ability to detect even small degrees of tricuspid regurgitation in normal subjects has improved. A mild “elevation” of PASP is now a common finding in the echocardiography laboratory, resulting in concern as to whether this represents true pathology. Previous definitions of pulmonary hypertension suggested that PASP exceeding 30 mm Hg was pathological; however, these data were often derived from small numbers of patients.3,4

We have analyzed our echocardiographic database of 34 333 subjects from a geographically dissimilar population (New Orleans versus Boston) to ascertain any differences from their findings. Applying the same definition of “echocardiographic normals” as McQuillan et al, we found 23 121 subjects, 58% of whom were women, which is similar to their reported sex ratio. Applying the same definition of “echocardiographic normals” as McQuillan et al, we found 23 121 subjects, 58% of whom were women, which is similar to their reported sex ratio. McQuillan and colleagues1 have established a range of PASP found in normal hearts confirms the previous definitions of “echocardiographic normals” as McQuillan et al, we found 23 121 subjects, 58% of whom were women, which is similar to their reported sex ratio. McQuillan et al also note that 22% of their patients >50 years and 20% of those with BMI >30 kg/m 2 had an RVSP >40 mm Hg (assuming a constant of 10 mm Hg for right arterial [RA] pressure). In our data, the upper bound for the 95% population confidence interval for a male >60 years of age was 43.6 mm Hg. Thus, echo values in the low 40s for older, heavier “echo normals” meet the statistical definition of normality. Although these values are based on an assumed constant of 10 mm Hg for RA pressure (which yields the best correlation between echo and catheter PASP across the full range encountered clinically), this constant overestimates RA pressure at the lower end of the scale (normal 1 to 5 mm Hg). If one accounts for this overestimation and the small gradient between the RV and PA required to move blood forward, then these values are within the upper limit of normal of 35 mm Hg for PASP used by many catheter laboratories (including our own). These data reinforce the need for all echo laboratories to state the constant used for RA pressure and for clinicians to understand how these numbers are derived.

Richard V. Milani, MD
Carl J. Lavie, MD
Andres Rubiano, BS
Ochsner Clinic Foundation
New Orleans, La


Response

We wish to thank Dr Milani and colleagues for their comments. They have noted several associations with pulmonary artery systolic pressure (PASP) similar to our own observations.1 Age, male sex, and left ventricular septal and posterior wall thickness (even within the normal range) were predictive of PASP in both cohorts. Their population was older and had a higher mean body mass index (BMI) and mean PASP (32.9±7.9 versus 28.3±4.9 mm Hg). Although the age range of their patients was not stated, we assume that some of these differences might exist because our population included children ≥1 year, whereas theirs was likely limited to adults. Milani and colleagues also note a much weaker association between BMI and PASP among their older, heavier subjects. This difference is more difficult to explain. As we note in our paper, others have previously reported an association between BMI and pulmonary artery pressure.2,3 In addition, in 5 large cohorts4 studied to determine whether there was an association between anorexigen use and valvular regurgitation (n=1515), there was a weak but statistically significant correlation between BMI and right ventricular systolic pressure (RVSP) in each cohort (0.1 to 0.4 mm Hg for each unit increase in BMI).

Milani et al also note that 22% of their patients >50 years and 20% of those with BMI >30 kg/m 2 had an RVSP >40 mm Hg (assuming a constant of 10 mm Hg for right arterial [RA] pressure). In our data, the upper bound for the 95% population confidence interval for a male >60 years of age was 43.6 mm Hg. Thus, echo values in the low 40s for older, heavier “echo normals” meet the statistical definition of normality. Although these values are based on an assumed constant of 10 mm Hg for RA pressure (which yields the best correlation between echo and catheter PASP across the full range encountered clinically), this constant overestimates RA pressure at the lower end of the scale (normal 1 to 5 mm Hg). If one accounts for this overestimation and the small gradient between the RV and PA required to move blood forward, then these values are within the upper limit of normal of 35 mm Hg for PASP used by many catheter laboratories (including our own). These data reinforce the need for all echo laboratories to state the constant used for RA pressure and for clinicians to understand how these numbers are derived.

Brendan M. McQuillan, MBBS, PhD
Michael H. Picard, MD
Marcia Leavitt, BS
Arthur E. Weyman, MD
Massachusetts General Hospital
Boston, Mass

Clinical Correlates and Reference Intervals for Pulmonary Artery Systolic Pressure Among Echocardiographically Normal Subjects
Richard V. Milani, Carl J. Lavie and Andres Rubiano

Circulation. 2002;106:e19
doi: 10.1161/01.CIR.0000024254.18659.22
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/106/5/e19