The E2F family of transcription factors (E2Fs) plays an important role in the regulation of cell proliferation and apoptosis and includes 6 structurally related E2F proteins (E2F1 through 6). E2Fs function as heterodimers with members of the DP family (DP-1 and DP-2) to transactivate or repress gene expression and play important roles in regulating both cell proliferation and antiproliferative processes such as apoptosis and senescence. Atherosclerosis represents a defective reparative process in response to repeated injuries to the vessel wall. Central to the resulting inflammatory reaction are proinflammatory cytokines, bacterial and viral products, and reactive oxygen intermediates, all of which activate nuclear factor kappa-B (NFκB), which controls the transcription of over 100 genes that encode mediators of innate immune and inflammatory responses. Among these induced genes are leukocyte adhesion molecules, metalloproteinases (MMPs), and proinflammatory cytokines, including tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6), which, in turn, can activate NFκB. Hence, NFκB not only promotes the recruitment and activation of inflammatory cells, but also serves as a central switch within a positive feedback loop that regulates the expression of proinflammatory factors in the development of atherosclerosis. In addition, NFκB works in concert with other transcription factors, activator protein-1 (AP-1) in particular, to activate the expression of pro-atherosclerotic genes. In this context, atherosclerosis can be viewed as an inflammatory process that is critically dependent on the transcriptional activation of cytokine genes under the control of NFκB and other transcription factors.

See p 2707

The relevance of NFκB to atherosclerosis is supported by numerous in vitro and in vivo studies. For example, activated NFκB and its regulated inflammatory mediators, such as cytokines, inducible NO synthase, and leukocyte adhesion molecules, have been detected in macrophages, smooth muscle cells, and endothelial cells in human atherosclerotic plaques but not in healthy vessels. Pathogenically important factors, such as reactive oxygen species involved in low-density lipoprotein oxidation, and components of microorganisms such as Chlamydia pneumoniae, can directly activate NFκB in cells isolated from atherosclerotic plaques. Furthermore, NFκB serves as a signaling molecule in apoptosis transduction pathways, resulting in increased turnover of vascular cells located in atherosclerotic plaque caps, which then renders such plaques vulnerable to rupture, contributing to the development of unstable coronary syndromes. Moreover, NFκB has been implicated in the pathophysiology of myocardial ischemia-reperfusion injury, ischemic preconditioning, and heart failure, as well as non-cardiovascular diseases, such as autoimmune arthritis, glomerulonephritis, asthma, lung fibrosis, septic shock, and carcinogenesis. Inhibition of NFκB nuclear translocation (and therefore activity), and probably of other transcription factors, should therefore provide a mechanism that inhibits the expression of a battery of proinflammatory genes induced in response to many injurious stimuli. Such inhibition may delay or even prevent the initiation and progression of atherosclerotic lesions and other diseases involving innate and maladaptive immunity.

The article by Chen et al demonstrates that adenovirus-mediated gene transfer of E2F-1 markedly inhibits the phosphorylation of IκB-α and reduces NFκB p65 nuclear translocation in response to TNFα in human aortic endothelial cells (HAECs). This study reveals a novel function of E2F-1, the best characterized member of the E2F family of transcription factors, and positions E2F-1 as an inhibitor for NFκB activation. Importantly, these authors showed that E2F-1 overexpression in HAECs counteracted the TNFα-induced endothelial intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression and inhibited the adhesion of monocytic U937 cells to HAECs. These data provide evidence for an important link between cytokines, E2F1, NFκB, and the proinflammatory transformation of endothelial cells, and suggest that E2F1 functions as an inhibitory regulator for NFκB activation and the ensuing inflammatory response.

Considering its central role in inflammation, several strategies have been developed to antagonize NFκB nuclear import. These include chemical pyrrolidine dithiocarbamate, adenovirus specifying IκBα, inhibitors for upstream NFκB activators, such as tyrosine phosphorylation of IκBα, inhibitors for upstream NFκB activators, such as tyrosine kinase inhibitors, and antisense oligonucleotides.
kinase (TK) and protein kinase C (PKC) inhibitors, NFκB decoy oligonucleotides, and a synthetic peptide containing a cell membrane-permeable motif and nuclear sequence, SN 50, to name a few.4,12,14 Although these approaches have been successful in inhibiting NFκB nuclear import in response to various stimuli, the consequence of blocking NFκB activation on the development of atherosclerosis turned out to be paradoxical, considering the general expectation of reduced atherosclerotic lesion formation on blocking pathways that converge to activate NFκB. For example, Schreyer et al15 demonstrated that C57BL/6 mice lacking TNF receptor p55—a factor thought to play a primary role in activating NFκB and hence in inflammatory processes—had aortic sinus lesions 2.3-fold larger than C57BL/6 wild-type mice when fed an atherogenic diet. Furthermore, they found that the uptake and degradation of acetylated low-density lipoprotein was increased by 3-fold in cultured peritoneal macrophages isolated from p55-null mice versus wild-type mice. These paradoxical findings are likely due to the multifaceted effects of NFκB in vascular cells, with regards to cell survival and apoptosis in particular.

Indeed, NFκB has been implicated in both promoting and inhibiting apoptosis. In endotoxemia, acute and overwhelming NFκB activation leads to widespread endothelial cell death with permeability disturbances and disseminated coagulation.16 TNFα-induced apoptosis is paralleled by increased NFκB activation.4 On the other hand, inhibition of NFκB increased, rather than reduced, TNFα-induced cell death in multiple cell types.17 Such a protective role of NFκB was also observed in p65/RelA knockout mice, which died embryonally from extensive liver apoptosis.18 Hence, it is apparent that NFκB exerts dual effects on the regulation of cell viability, and such dual effects stress the need for ways to manipulate NFκB activity that would selectively induce cell death in one cell type, while protect cells from undergoing apoptosis in another cell type in the same organ in order to achieve maximal therapeutic efficacy with minimal side effects. In the case of atherosclerosis and related conditions, preservation of the endothelium with simultaneous modulation of cell type in the same organ in order to achieve maximal therapeutic efficacy is of prime importance. For instance, in the study of Ikeda et al,19 the aortas of TNFα-deficient mice had aortic sinus lesions 2.3-fold larger in inflammatory processes—had aortic sinus lesions 2.3-fold larger than C57BL/6 wild-type mice when fed an atherogenic diet.

NFκB activation leads to widespread endothelial cell death with permeability disturbances and disseminated coagulation.16 TNFα-induced apoptosis is paralleled by increased NFκB activation.4 On the other hand, inhibition of NFκB increased, rather than reduced, TNFα-induced cell death in multiple cell types.17 Such a protective role of NFκB was also observed in p65/RelA knockout mice, which died embryonally from extensive liver apoptosis.18 Hence, it is apparent that NFκB exerts dual effects on the regulation of cell viability, and such dual effects stress the need for ways to manipulate NFκB activity that would selectively induce cell death in one cell type, while protect cells from undergoing apoptosis in another cell type in the same organ in order to achieve maximal therapeutic efficacy with minimal side effects. In the case of atherosclerosis and related conditions, preservation of the endothelium with simultaneous modulation of cell type in the same organ in order to achieve maximal therapeutic efficacy is of prime importance. For instance, in the study of Ikeda et al,19 the aortas of TNFα-deficient mice had aortic sinus lesions 2.3-fold larger in inflammatory processes—had aortic sinus lesions 2.3-fold larger than C57BL/6 wild-type mice when fed an atherogenic diet.

References


Key Words: Editorsials ■ atherosclerosis ■ inflammation ■ signal transduction
E2F1: A Magic Bullet for Atherosclerosis?
Chunming Dong and Pascal J. Goldschmidt-Clermont

Circulation. 2002;106:2640-2641
doi: 10.1161/01.CIR.0000043247.87843.AA

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/106/21/2640

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/