Calmodulin Kinase II and Arrhythmias in a Mouse Model of Cardiac Hypertrophy

Yuejin Wu, PhD*; Joel Temple, MD*; Rong Zhang, MD, PhD*; Igor Dzhura, PhD; Wei Zhang, MD; Robert Trimble, BS; Dan M. Roden, MD; Robert Passier, PhD; Eric N. Olson, PhD; Roger J. Colbran, PhD; Mark E. Anderson, MD, PhD

Background—Calmodulin kinase (CaMK) II is linked to arrhythmia mechanisms in cellular models where repolarization is prolonged. CaMKII upregulation and prolonged repolarization are general features of cardiomyopathy, but the role of CaMKII in arrhythmias in cardiomyopathy is unknown.

Methods and Results—We studied a mouse model of cardiac hypertrophy attributable to transgenic (TG) overexpression of a constitutively active form of CaMKIV that also has increased endogenous CaMKII activity. ECG-telemetered TG mice had significantly more arrhythmias than wild-type (WT) littermate controls at baseline, and arrhythmias were additionally increased by isoproterenol. Arrhythmias were significantly suppressed by an inhibitory agent targeting endogenous CaMKII. TG mice had longer QT intervals and action potential durations than WT mice, and TG cardiomyocytes had frequent early afterdepolarizations (EADs), a hypothesized mechanism for triggering arrhythmias. EADs were absent in WT cells before and after isoproterenol, whereas EAD frequency was unaffected by isoproterenol in TG mice. L-type Ca\(^{2+}\) channels (LTCCs) can activate EADs, and LTCC opening probability (Po) was significantly higher in TG than WT cardiomyocytes before and after isoproterenol. A CaMKII inhibitory peptide equalized TG and WT LTCC Po and eliminated EADs, whereas a peptide antagonist of the Na\(^{+}/Ca\(^{2+}\) exchange current, also hypothesized to support EADs, was ineffective.

Conclusions—These findings support the hypothesis that CaMKII is a proarrhythmic signaling molecule in cardiac hypertrophy in vivo. Cellular studies point to EADs as a triggering mechanism for arrhythmias but suggest that the increase in arrhythmias after \(\beta\)-adrenergic stimulation is independent of enhanced EAD frequency. (Circulation. 2002;106:1288-1293.)

Key Words: arrhythmia ■ calcium ■ signal transduction

Cardiac arrhythmias are a leading cause of death in patients with cardiac hypertrophy, but identification of molecular signaling pathways linking cardiac hypertrophy to disordered electrical excitability has been lacking. Calmodulin kinase (CaMK) types II and IV are both present in the nucleus,1 where they activate signaling pathways for cardiac hypertrophy,2–4 but CaMKII is also a proarrhythmic signaling molecule in cellular models of drug-induced action potential prolongation.5,6 Upregulation of CaMKII activity and expression seems to be a general feature of cardiomyopathy from diverse causes in patients7 and animal models8,9 suggesting the hypothesis that CaMKII is a proarrhythmic signaling molecule in cardiomyopathy where cardiac repolarization is prolonged because of electrical remodeling.

See p 1180

Reduction in repolarizing outward K\(^{+}\) currents and action potential and QT interval prolongation are also consistent findings in electrical remodeling in cardiac hypertrophy. However, the electrical remodeling phenotype, per se, does not explain the mechanism of arrhythmias in cardiac hypertrophy. On the other hand, L-type Ca\(^{2+}\) current \((I_{CaL})\) and Na\(^{+}/Ca\(^{2+}\) exchanger current \((I_{Na/Caex})\) are candidate inward currents for initiating arrhythmia-triggering afterdepolarizations in electrically remodeled myocardium.10,11 Whereas CaMKII is hypothesized to favor afterdepolarizations attributable to \(I_{CaL}\) and \(I_{Na/Caex}\) in cellular models, CaMKII has not been demonstrated to be a proarrhythmic signal in vivo.

We developed a mouse model of cardiac hypertrophy using transgenic (TG) expression of a constitutively active form of CaMKII. Arrhythmias were significantly increased in TG mice compared to WT littermates, and this increase was not affected by isoproterenol. A CaMKII inhibitory peptide suppressed arrhythmias in TG mice, whereas a peptide antagonist of the Na\(^{+}/Ca\(^{2+}\) exchange current was ineffective. These findings support the hypothesis that CaMKII is a proarrhythmic signaling molecule in cardiac hypertrophy in vivo.

Received May 7, 2002; revision received June 11, 2002; accepted June 11, 2002.

From the Departments of Internal Medicine (Y.W., R.Z., I.D., R.T., D.M.R., M.E.A.), Pediatrics (J.T.), Pharmacology (W.Z., D.M.R., M.E.A.), and Molecular Physiology and Biophysics (R.J.C.), Vanderbilt University, Nashville, Tenn, and Department of Molecular Biology (R.P., E.N.O.), The University of Texas Southwestern Medical Center at Dallas, Tex.

*These authors contributed equally to this study.

Correspondence to Mark E. Anderson, MD, PhD, Division of Cardiovascular Medicine, 383 Preston Research Building, 2220 Pierce Ave, Nashville, TN 37232-6300. E-mail mark.anderson@vanderbilt.edu

© 2002 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org

DOI: 10.1161/01.CIR.0000027583.73268.E7
CaMKIV, where endogenous CaMKII activity can be readily distinguished from TG CaMKIV activity using specific inhibitors and substrates. These mice have cardiac hypertrophy and reduced systolic function\(^2\) and significantly increased CaMKII activity and expression. We studied these mice to test the hypothesis that CaMKII can be a proarrhythmic signaling molecule in vivo. In this study, we report in vivo, cellular, and biochemical evidence that CaMKII is a critical signal for arrhythmias in cardiac hypertrophy.

Methods

CaMKIV Transgenic Mice

TG mice expressed a truncated, constitutively active form of human CaMKIV lacking the calmodulin-binding domain.\(^3\) TG mice develop moderate cardiac hypertrophy and \(\sim 50\%\) reduction in left ventricular ejection fraction. Experiments were performed on 8- to 24-week-old TG mice and wild-type (WT) littermate controls.

Electrocardiographic Telemetry

Mice were anesthetized (pentobarbital 33 \(\mu\)g/g and ketamine 33 \(\mu\)g/g IP) before placing a transmitter (Data Sciences International) into the abdominal cavity with subcutaneous electrodes in a lead I configuration. ECG intervals were determined in ambulatory, unanesthetized mice by signal averaging 10-second epochs every 5 minutes for a 30-minute baseline period. Continuous recording was performed for 30-minute intervals during arrhythmia screening. Signal-averaging was performed using custom software developed at Vanderbilt University. Interval measurements were performed without explicit knowledge of genotype, but QT interval prolongation was always apparent in the TG mice. QT intervals were corrected (QTc) for heart rate by a formula developed for mice.\(^12\)

Arrhythmia Induction and Screening

Arrhythmias were categorized into 5 groups and assigned the following point values: no arrhythmias, 0 points; premature atrial or ventricular beats, 1 point; supraventricular tachycardia or paired premature ventricular beats, 2 points; bigeminal or trigeminal premature ventricular beats or nonsustained ventricular tachycardia (\(\geq 3\) consecutive premature ventricular beats), 3 points; and sustained ventricular tachycardia (\(>10\) consecutive premature ventricular beats) or polymorphic ventricular tachycardia, 4 points.

Mice were treated with the CaMK inhibitory agent KN-93 (10 to 30 \(\mu\)mol/kg IP) or the inactive congener KN-92 (30 \(\mu\)mol/kg IP)\(^4\) 10 minutes before isoproterenol (100 \(\mu\)g IP). KN-93 and KN-92 were tested in the same mouse on different days. ECGs were obtained from unanesthetized and unrestrained mice 30 minutes after isoproterenol. Recordings were analyzed offline and coded for arrhythmias.

CaMKII Activity and Expression

CaMKII activity was determined in the presence of Ca\(^{2+}\)/CaM from fresh ventricular homogenates\(^14\) using syntide 2, a synthetic substrate with \(\sim 50\%\) selectivity for CaMKII over CaMKIV.\(^5\) Ventricular extracts (30 \(\mu\)g protein per lane) were analyzed by SDS-PAGE and immunoblotted using a CaMKII antibody that specifically recognizes the \(\delta\) isoform (a generous gift from Dr H. Singer, SUNY, Albany, NY) and a control PP1\(\beta\)-specific antibody.\(^6\) Blots were developed using colorimetric reagents with alkaline phosphatase conjugated secondary antibodies and digitized images were quantified using NIH Image.

Inhibitory Peptides

The CaMKII inhibitory peptide AC3-I (KKALHRQAEVDCL, \(I_{C_{50}} \sim 3 \mu\)mol/L)\(^5\) (Macromolecular Resources) is a modified CaMKII substrate. AC3-C (KKALHAQERVDCL) is an inactive control peptide (\(I_{C_{50}} > 500 \mu\)mol/L). AC3-I (40 to 100 \(\mu\)mol/L) and AC3-C (100 \(\mu\)mol/L) were dialyzed into cells for 5 to 10 minutes before experiments. CaMKII inhibitory peptides were engineered for cell membrane permeability with separate minigenes encoding AC3-I and AC3-C using pGEX-3X-MTS2 (a generous gift from Drs Rojas and Lin, Vanderbilt University, Nashville, Tenn), as described.\(^18\) Cardiomyocytes were exposed to cell membrane permeant peptides (1 \(\mu\)mol/L) for \(\geq 30\) minutes before the experiments.

The \(I_{C_{50}}\) inhibitory peptide (XIP, RREIFYKVYKRYRAGKQRF)\(^19\) and the inactive control peptide scrambled XIP (sXIP) (Macromolecular Resources) were dialyzed for 5 to 10 minutes (10 \(\mu\)mol/L) before initiating experiments.

Myocyte Isolation and Electrophysiology

Ventricular myocytes were isolated as previously described.\(^20\)

Voltage Clamp

Whole-cell mode voltage clamp measured transient (\(I_{Na}\)) and sustained (\(I_{Nax}\)) components of repolarizing \(K^+\) current (\(T = 34\)°C to 36°C). \(I_{Na}\) was the residual current at the end of a 450-ms depolarizing pulse (0.33 Hz), and \(I_{Nax}\) was the difference between peak outward \(K^+\) current and \(I_{Na}\) (Figure 1e).\(^21\) The bath solution for \(K^+\) current voltage clamp studies was (in mmol/L) N-methyl-D-glucamine 149, HEPES 5, glucose 5, KCl 1, and MgCl\(_2\) 5, and the pH was adjusted to 7.4 with 12 N HCl.\(^24\) The pipette solution was (in mmol/L) K aspartate 120, HEPES 5, KCl 1, and MgCl\(_2\) 1, Na phosphocreatine 2, NaGTP 2, CaCl\(_2\) 1, and EGTA 10, and the pH was adjusted to 7.2 with 1 N KOH. On-cell mode voltage clamp
configuration was used to measure single LTCC currents, using Ba\(^{2+}\) or Ca\(^{2+}\) (both 110 mmol/L) as charge carrier, as previously described by us.\(^{20}\) \(\beta\)-Adrenergic signaling was activated for LTCC recordings using isoproterenol (2 \(\mu\)mol/L) and isobutylmethylxanthine (20 \(\mu\)mol/L).\(^{22}\) Current clamp was used for stimulating action potentials (0.5 Hz) in physiological solutions (\(T=34^\circ\)C to 36\(^\circ\)C). Action potential duration was measured at 50% (APD\(_{50}\)) and 90% (APD\(_{90}\)) repolarization to baseline. The bath solution contained (in mmol/L) NaCl 140, HEPES 5, glucose 10, KCl 5.4, CaCl\(_{2}\) 2.5, and MgCl\(_{2}\) 1, and the pH was adjusted to 7.4 with 10 N NaOH. The pipette (intracellular) solution was the same as listed above for K\(^{+}\) current experiments. Junction potentials between pipette and bath solutions were compensated electronically. Early afterdepolarizations (EADs) were defined as discrete oscillations in repolarization during the action potential plateau.\(^{14}\)

Statistics

The null hypothesis was rejected for \(P<0.05\) using Student’s unpaired \(t\) test or ANOVA, as appropriate. The Wilcoxon ranked sign test was used for comparison of KN-93 and KN-92 effects on arrhythmias scores, and Fisher’s exact test was used to compare the frequency of EADs between WT and TG mice. Data were expressed as mean±SEM.

Results

Electrical Remodeling in CaMKIV TG Mice

CaMKIV TG mice have increased QT intervals (Figures 1a and 1b), prolonged action potential durations (APDs) (Figures 1c and 1d), and reduced repolarizing K\(^{+}\) currents (Figure 1e). These findings show that the CaMKIV TG mouse has important electrical changes seen generally in cardiomyopathy and suggest that it may be a useful new model to probe the molecular signaling mechanisms for arrhythmias in cardiac hypertrophy.

CaMKII Expression and Activity Are Increased in TG Hearts

CaMKII activity and expression are both increased in CaMKIV TG mice (Figure 2), as occurs in humans and other animal models of cardiomyopathy.\(^{7–9}\) Based on the combined presence of electrical remodeling (Figure 1) and increased CaMKII activity (Figure 2), we tested whether CaMKIV TG mice had arrhythmias and if these arrhythmias could be suppressed by CaMKII inhibition.

Increased Arrhythmias in TG Mice Are Suppressed by Inhibition of CaMK

Although one CaMKIV TG mouse had spontaneous torsade de pointes (Figure 3a), a form of ventricular tachycardia linked to Ca\(^{2+}\)/calmodulin (CaM)-dependent signaling,\(^ {23,24}\) and arrhythmias were significantly more common in TG than WT mice (Figure 3c), arrhythmia scores were low under basal conditions. Isoproterenol was administered to increase arrhythmia scores, based on the reasoning that \(\beta\)-adrenergic
agonists are known to increase \([Ca^{2+}]\), activate CaMKII, and favor arrhythmia-triggering afterdepolarizations. Arrhythmias were observed significantly more frequently in unanesthetized and unrestrained TG mice at baseline, and high-grade arrhythmias (point score \(\geq 2\)) occurred frequently in TG mice after isoproterenol (Figure 3), consistent with the increased tendency for arrhythmias in electrically remodeled myocardium.

To test the hypothesis that the enhanced CaMKII activity (Figure 2) contributed to high-grade arrhythmias that were frequent in TG mice after isoproterenol (Figure 3), consistent with the increased tendency for arrhythmias in electrically remodeled myocardium.

CaMKII Activity Is Required for EADs in CaMKIV TG Mice

EADs are an important trigger for arrhythmias in electrically remodeled myocardium, and EADs were only observed in ventricular myocytes from TG mice at baseline (Figures 4a and 4c) and after isoproterenol (Figure 4d). Interestingly, EAD frequency was not affected by isoproterenol \((P=0.46\) compared with baseline for TG cells). Isoproterenol induced complex effects on APD, lengthening APD\(_{50}\) in TG and WT cells but shortening APD\(_{90}\) only in TG cardiomyocytes (Figure 4b). The findings up to this point show that TG mice have increased arrhythmias and frequent EADs and suggest that isoproterenol may enable EADs to more effectively trigger arrhythmias without increasing overall EAD frequency.

To examine the hypothesized cellular basis for the link between increased CaMKII activity and arrhythmias, we measured the response of EADs to the CaMKII inhibitory peptide AC3-I. CaMKII activity was required for EADs because EADs were prevented by AC3-I but not by the inactive control peptide AC3-C (Figure 4e). Both LTCC\(^{20}\) and the Na\(^+\)/Ca\(^2+\) exchanger\(^6\) cause inward currents regulated by CaMKII activity that may initiate EADs. However, a \(I_{Na,Ca}\) inhibitory peptide did not prevent EADs (Figure 4e), indicating that \(I_{Na,Ca}\) did not cause EADs in this model. EAD initiation was within the \(I_{Ca}\) window potential range \((-27.5\pm0.2\ mV\) for 534 EADs from 9 cells), suggesting that LTCC activity could be responsible for EADs seen in these cells.\(^{28}\)

Action Potential Prolongation Alone Does Not Cause EADs

EADs can be prevented by shortening action potential repolarization, so we measured APD in isolated TG myocytes to

![Figure 4](http://circ.ahajournals.org/)

Figure 4. CaMKII activity is required for EADs. a, EADs are oscillations in the prolonged plateau phase of stimulated action potentials from TG mice. b, Isoproterenol increased APD\(_{50}\) in TG \((n=4)\) and WT \((n=11)\) cardiomyocytes but significantly shortened APD\(_{90}\) only in TG cells \((P<0.05)\). c and d, EADs were frequent in TG cardiomyocytes at baseline, \((P<0.001)\) and after isoproterenol \((P<0.05)\) but were never seen in WT littermate controls. The number of cells with EADs (numerator) and the total number of cells studied (denominator) is shown as a fraction. e, EADs in TG cardiomyocytes were prevented by dialysis of the CaMKII inhibitory peptide AC3-I but not by the inactive control peptide AC3-C \((P=0.002)\), whereas the Na\(^+\)/Ca\(^2+\) exchanger inhibitory peptide XIP failed to suppress EADs.

![Figure 5](http://circ.ahajournals.org/)

Figure 5. CaMKII inhibition does not shorten the APD in TG cardiomyocytes. a, APD\(_{50}\) and APD\(_{90}\) were not different between TG cardiomyocytes (black bars) dialyzed with the CaMKII inhibitory peptide AC3-I or the inactive control peptide AC3-C. b and c, The Na\(^+\)/Ca\(^2+\) exchanger current inhibitory peptide XIP significantly shortened APD\(_{90}\) \((P=0.01)\) in WT cardiomyocytes (open bars) compared with control (no peptide) or an inactive scrambled XIP congener (sXIP). XIP did not shorten APD in TG cells. Labeled bars and the number of cells studied (abscissa) in panel b correspond to bars in panel c.
CaMK and the Arrhythmogenic Phenotype in Cardiomyopathy

CaMK types I, II, and IV are all implicated in cardiac hypertrophy, but CaMKII is by far the most abundant CaM-activated kinase in heart. Upregulation of CaMKII seems to be a general feature of cardiomyopathy in humans, rats, and mice (Figure 2), although the mechanism for CaMKII upregulation is presently unknown. CaMKII targets key control molecules for intracellular Ca²⁺ homeostasis in cardiomyocytes, and increased CaMKII may trigger arrhythmia-initiating afterdepolarizations by activating LTCCs or increasing I_{Na/Caexo} during action potential prolongation. The present results support the hypothesis that CaMKII is a critical molecular signal for arrhythmias in cardiac hypertrophy in vivo and suggest that increased LTCC Po and EADs may be CaMKII-driven components of the cellular arrhythmia mechanism.

Isoproterenol-Induced Arrhythmias

The present findings support the concept that the increased CaMKII present in cardiomyopathy is arrhythmogenic and that CaMKII-dependent arrhythmias are additionally enhanced after activation through β-adrenergic stimulation, perhaps by virtue of the increased [Ca²⁺], that follows generation of protein kinase A. On the other hand, β-adrenergic receptor blockade significantly reduces sudden death in patients with cardiac hypertrophy and heart failure, raising the possibility that part of the salutary effect of β-adrenergic receptor antagonist drugs may be mediated through secondary actions on CaMKII signaling.

Arrhythmia Mechanisms in Cardiomyopathy

There is an increasing recognition that arrhythmia mechanisms in cardiomyopathy involve both cellular and tissue remodeling. Cellular studies consistently reveal APD prolongation and an increased tendency for afterdepolarizations that are a hypothesized focal mechanism for arrhythmia triggering. Focal cellular mechanisms seem to be important for arrhythmia initiation in patients with cardiomyopathy, but changes in the myocardium, involving intercellular coupling, scaring, and fibrosis, also constitute a macroscopic arrhythmogenic substrate that contributes to arrhythmia maintenance. The TG mice have more arrhythmias and frequent EADs at baseline, but the finding that EAD frequency is
unchanged whereas arrhythmias increase after isoproterenol suggests that the proarrhythmic action of isoproterenol occurs at the tissue level, perhaps by enhancing EAD propagation. The present studies are the first to implicate CaMKII-dependent signaling in arrhythmias in cardiac hypertrophy. Additional studies will be required to address the effects of CaMKII on macroscopic arrhythmia mechanisms.

Acknowledgments
This work was supported by National Heart, Lung, and Blood Institute grants HL03727 and HL62494 (to Dr Anderson). Dr Anderson is an Established Investigator of the American Heart Association and a Stahlman Scholar. We thank Martha Bass and Jinying Yang for technical assistance and Drs Jeffrey R. Balser and Lou DeFelice for helpful comments.

References
Calmodulin Kinase II and Arrhythmias in a Mouse Model of Cardiac Hypertrophy
Yuejin Wu, Joel Temple, Rong Zhang, Igor Dzhura, Wei Zhang, Robert Trimble, Dan M. Roden, Robert Passier, Eric N. Olson, Roger J. Colbran and Mark E. Anderson

Circulation. 2002;106:1288-1293; originally published online August 19, 2002; doi: 10.1161/01.CIR.0000027583.73268.E7

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/106/10/1288

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/