Automated External Defibrillators in Health/Fitness Facilities

Supplement to the AHA/ACSM Recommendations for Cardiovascular Screening, Staffing, and Emergency Policies at Health/Fitness Facilities

Writing Group
Gary J. Balady, MD, Chair; Bernard Chaitman, MD; Carl Foster, PhD; Erika Froelicher, PhD; Neil Gordon, MD; Steven Van Camp, MD

In 1998, the American Heart Association (AHA) and American College of Sports Medicine (ACSM) published recommendations5,6 for health/fitness facilities regarding the screening of clients for the presence of cardiovascular disease, appropriate staffing, emergency policies, equipment, and procedures relative to the client base of a given facility. Accordingly, health/fitness facilities are defined as organizations that offer exercise-based health and fitness programs as their primary or secondary service or that promote moderate- to vigorous-intensity recreational physical activity. These range from level 1 (unsupervised exercise room) to level 5 (medically supervised exercise program), and their specific characteristics are outlined in Table 1. Details regarding emergency readiness are provided in the AHA/ACSM recommendations5,6 and emphasize that all health/fitness facilities must have written emergency policies and procedures that are reviewed and practiced regularly, and that in all supervised facilities, exercise leaders must be trained in basic cardiopulmonary resuscitation (CPR). Because of the publication of the 1998 AHA/ACSM recommendations, 47 states have since passed Good Samaritan legislation, and the federal government has passed the Cardiac Arrest Survival Act and the Rural Access to Emergency Devices Act as components of the federal Public Health Improvement Act of 2000.7 These state and federal laws now serve to expand Good Samaritan legal protections to users of automated external defibrillators (AEDs) throughout the nation. Therefore, the purpose of this statement is to supplement the 1998 AHA/ACSM recommendations5,6 regarding the purchase and use of AEDs in health/fitness facilities. Similar to the parent document,5,6 these recommendations are based on a review of the literature and consensus of the writing group after having undergone extensive peer review and final approval by AHA and ACSM. The recommendations are not mandatory or all encompassing, nor do they limit provision of individualized care by health/fitness facilities exercising independent judgment.

Role of AEDs in the Chain of Survival

An AED is a device that incorporates a rhythm-analysis system and a shock-advisory system for victims of cardiac arrest.1 The AED advises a shock, and the operator must take the final action to deliver the shock. The International Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care2 conclude that early CPR is the best treatment for cardiac arrest until the arrival of an AED and advanced cardiac life support care. The chain of survival includes a series of actions designed to reduce mortality associated with cardiac arrest. Early CPR plays an important role in the chain of survival that includes the following links: 1) early recognition of cardiopulmonary arrest, 2) early CPR, 3) early defibrillation when indicated, and 4) early advanced cardiac life support care.7 Early CPR can prevent ventricular fibrillation from deteriorating to asystole, may increase the chance of successful defibrillation, contributes to the preservation of heart and brain function, and significantly improves survival.4 Importantly, for victims of sudden, shockable cardiac arrest (ventricular fibrillation or pulseless ventricular tachycardia), the single greatest determinant of survival is the time from collapse to defibrillation. A recent review17 summarizes the data comparing the time-to-shock between first responders (i.e., firefighters, police, and emergency medical system (EMS) basic life support personnel) versus paramedics and demonstrates significantly shorter times among first responders in three of five studies. A survival rate, among victims of witnessed ventricular fibrillation cardiac arrest, as high as 90% has been reported when defibrillation is achieved within the first minute of collapse.8,11,14,15,21 Survival rates decline 7–10% with every minute that defibrillation is delayed, such that a cardiac arrest victim without defibrillation beyond 12 minutes has only a 2–5% chance of survival.1 The highest survival rates for out of hospital cardiac arrest have been reported in cardiac rehabilitation programs equipped with defibrillators (i.e., Table 1: level-5 facilities), where survival approaches 90%.8,11,14,15,21 The International Guidelines2 conclude that public access to defibrillation (PAD) accomplished by the placement of AEDs in selected locations for immediate use by trained laypersons may be the key

“Automated External Defibrillators in Health/Fitness Facilities” was approved by the American Heart Association Science Advisory and Coordinating Committee in December 2001. This statement is being published simultaneously in Medicine and Science in Sports and Exercise.
Health/Fitness Facilities—Emergency Plans and Equipment*

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of facility</td>
<td>Unsupervised exercise room (e.g., those in hotels, commercial buildings, and apartment complexes)</td>
<td>Single exercise leader</td>
<td>Fitness center for general membership</td>
<td>Fitness center offering special programs for clinical populations</td>
</tr>
<tr>
<td>Personnel†</td>
<td>None</td>
<td>Exercise leader Recommended: medical liaison</td>
<td>General manager Health/fitness instructor Exercise leader Recommended: medical liaison</td>
<td>General manager Exercise specialist Health/fitness instructor Medical liaison</td>
</tr>
<tr>
<td>Emergency plan</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Emergency equipment</td>
<td>Telephone in room Signs Encouraged: PAD plan with AED as part of the composite PAD plan in the host facility (e.g., hotel, commercial building, apartment complex)</td>
<td>Telephone Signs Encouraged: blood pressure kit, stethoscope, PAD plan with AED</td>
<td>Telephone Signs Encouraged: blood pressure kit, stethoscope, PAD plan with AED (the latter are strongly encouraged in facilities with membership >2500 and those in which EMS response time is expected to be >5 minutes from recognition of arrest)</td>
<td>Telephone Signs Encouraged: blood pressure kit, stethoscope, PAD plan with AED</td>
</tr>
</tbody>
</table>

*This table should replace the bottom half of Table 5 of the AHA/ACSM Recommendations.5,6
†Detailed definitions and competencies for personnel positions are outlined in the ACSM Guidelines.10
‡Standard equipment in level 5 facilities includes a defibrillator:5,6,22

AED, automatic external defibrillator; PAD, public access to defibrillation.

Cardiovascular Risks of Exercise

The AHA/ACSM Recommendations5,6 provide details regarding the cardiovascular risks of exercise. It is clear that the risk of adverse cardiovascular events including death is greater among those individuals with cardiovascular disease than among presumably healthy individuals.5,6,9 As the demographics of the more than 30 million individuals who exercise at health/fitness facilities demonstrate a steady increase in the number of members older than 35 yr (approximately 55% of current membership),16 it is reasonable to presume that the number of members with cardiovascular disease (and other comorbidities) is rising as well. Although there are no data regarding the incidence of cardiac arrest at health/fitness facilities, two recent surveys provide some important insight. A large database consisting of more than 2.9 million members of a large commercial health/fitness facility chain demonstrates 71 deaths (mean age 52 ± 13 yr; 61 men, 10 women) occurring over a 2-year period, yielding a rate of 1 death/100,000 members/year. The death rate was highest among those members who exercised less frequently, such that nearly half of exercise-related deaths were in those who exercised less than once/week.12 The cardiac arrest rate was not reported but was presumably higher than the death rate. A recent survey of 65 randomly chosen health/fitness facilities in Ohio18 reports the occurrence of sudden cardiac arrest or heart attack in 17% of facilities during a 5-year period. Notably, only 3% of facilities had an AED on site. Thus, it is prudent to conclude that health/fitness facilities should be considered among the sites in which PAD programs should be established.

Recommendations

It is essential to acknowledge that emergency equipment alone does not save lives. The ACSM/AHA Recommendations5,6 emphasize the importance of written emergency policies and procedures that are reviewed and practiced regularly. Well-trained health/fitness facility staff members are essential to maintain strong links in the chain of survival for their clients. Effective placement and use of AEDs at all health/fitness facilities (Table 1: levels 1–5) is encouraged, as permitted by law, to achieve the goal of minimizing the time between recognition of cardiac arrest and successful defibrillation. Until further definitive data are available, AED placement is strongly encouraged in those health/fitness facilities with a large number of members (i.e., membership >2500; (> median size health/fitness facility16)); those that offer special programs to clinical populations (i.e., programs for the elderly or those with medical conditions (level 4)) (note that in level-5 facilities, current equipment standards require defibrillators5,6,22; and those health/fitness facilities in which the time from the recognition of cardiac arrest until the first shock is delivered by the EMS is anticipated to be > 5

intervention to significantly increase survival from an out-of-hospital cardiac arrest. Two recent observational studies report impressive results regarding the effectiveness of PAD in persons with witnessed cardiac arrest, who are in ventricular fibrillation, with AED placement in casinos20 and on airplanes.19 The cardiac arrest survival rates to discharge from the hospital were 53% and 40%, respectively.

Health/Fitness Facilities—Emergency Plans and Equipment*
minutes. In unsupervised exercise rooms (level-1 facilities), such as those that might be located in hotels, apartment complexes, or office buildings, the AED should be part of the overall PAD plan for the host facility. At the least, an unsupervised exercise room should have a telephone available in the room with clearly posted numbers to call in case of emergency. In supervised settings, it is essential that designated health/fitness facility staff members who are trained in CPR be present during all hours of operation. CPR should be initiated as soon as a cardiac arrest is recognized and should be continued until the AED is placed on the victim and is activated. In cases of cardiac arrest not due to ventricular fibrillation (VF) or pulseless ventricular tachycardia (VT), AEDs are of no value, and CPR must be maintained. Also, after successful termination of VF/pulseless VT, the rescuer must be able to open the airway and support ventilation and circulation with chest compressions as needed until the arrival of EMS personnel.

Therefore, the establishment of a PAD at all health/fitness facilities is encouraged. This plan should include the following:

- Have written emergency policies and procedures that are practiced regularly (i.e., at least once every 3 months).
- Designate staff members who are trained in CPR and function as first responders in the health/fitness facility setting during all hours of operation.
- Train staff to recognize cardiac arrest.
- Activate EMS—assign staff to meet the emergency response team at the entrance of the facility so that they can be promptly guided to the victim.
- Provide CPR.
- Attach/operate AED (detailed instructions are provided by the specific equipment manufacturer and general recommendations are outlined in the Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.1)
- The use of AEDs in infants and children < 8 yr of age is not recommended.1

Health/fitness facilities should coordinate their PAD program with the local EMS, because many dispatch systems use local phone-directed protocols to assist rescuers in the use of AED and may notify local EMS en route that an AED is being used at the scene. Moreover, the local EMS may assist with program planning and quality improvement, including medical direction, AED deployment and protocols, training, monitoring, and review of AED events.1 Emergency drills should be practiced at least once every 3 months or more often when staff changes occur.5,6 When new staff are hired, new team arrangements may be necessary. The simulated use of AEDs in drills offers the best opportunity for skills maintenance. Maintaining the AED device in proper working condition according to the manufacturer’s recommendations is essential. PAD programs must comply with local or regional regulation and legislation.

Costs

Details regarding the technical aspects of AEDs are available elsewhere.1,17 At present, the cost of an AED is approxi-
• Health/fitness facilities should coordinate their PAD program with the local EMS.
• Emergency drills should be practiced at least once every 3 months or more often when staff changes occur.
• PAD programs must comply with local or regional regulation and legislation.

Acknowledgments
This work is a supplement to the AHA/ACSM Recommendations for Cardiovascular Screening, Staffing, and Emergency Policies at Health/Fitness Facilities.5,6

References

Key Words: AHA Scientific Statements ▪ automated external defibrillators ▪ exercise ▪ resuscitation ▪ cardiac arrest ▪ defibrillation
Automated External Defibrillators in Health/Fitness Facilities: Supplement to the AHA/ACSM Recommendations for Cardiovascular Screening, Staffing, and Emergency Policies at Health/Fitness Facilities

Gary J. Balady, Bernard Chaitman, Carl Foster, Erika Froelicher, Neil Gordon and Steven Van Camp

Circulation. 2002;105:1147-1150
doi: 10.1161/hc0902.105998

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/105/9/1147

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/