Serum Triglyceride Concentration and Coronary Heart Disease

To the Editor:

The independent prognostic significance of fasting triglyceride concentration is currently debated. The article by Sharrett et al reports the impact of several lipid parameters on the subsequent occurrence of coronary heart disease in the Atherosclerosis Risk in Communities Study, in which a large middle-aged population free from coronary heart disease at baseline was followed for 10 years.

The authors’ statement that triglycerides provide “substantial” and “independent” coronary heart disease prediction, at least in women, is not fully supported by the study results. The authors affirm that the association between triglycerides and subsequent coronary heart disease they found in women after adjustment for age and race holds in a multivariate analysis that takes into account several other risk factors (“fully adjusted” model). In the authors’ view, this latter analysis “shows similar patterns” as the former. As a matter of fact, triglycerides are associated with a significant age- and race-adjusted risk for coronary heart disease (1.29 per 0.70 mmol/L increase, \(P<0.01\); see Table 2 in Sharrett et al) in a model that also includes LDL and HDL cholesterol. However, this relation is substantially weakened and loses its significance when smoking, systolic blood pressure, use of medications for hypertension, and diabetes are also included in the model (relative risk, 1.15 per 0.70 mmol/L, \(P=0.01\)). The strength of the relationship is not materially affected by the inclusion of lipoprotein(a) in the model, although the association reaches statistical significance (relative risk, 1.15 per 0.70 mmol/L, \(0.01<\text{ }	ext{ }P<0.05\)). In men, no prognostic value of serum triglycerides was found, both in the age- and race-adjusted analysis and in the “fully adjusted” model.

These data suggest that the adverse prognostic significance of triglycerides depends to a large extent on the confounding effect of important independent coronary risk factors, such as hypertension and diabetes, which were taken into account in the “fully adjusted” model. A significant association exists between serum triglycerides and high blood pressure, medications, and diabetes. The relative risk of triglyceride-rich lipoproteins might be somewhat greater than suggested by a model that includes correlated variables such as HDL cholesterol and diabetes because a single triglyceride measurement is not a good index of a person’s daily or long-term triglyceridemia. We claimed independent prediction for women, but consistent with literature we cited, not in men. We did not claim that the independent contribution of triglycerides was “substantial”, but that its top quintile relative risk was much greater in women (4.7) than in men (2.1).

Response

Drs Schillaci et al correctly state our article’s findings.1 Triglycerides were independent coronary heart disease (CHD) predictors in women in all the age and race models examined, regardless of other lipids included. Triglycerides were also independently predictive in women in the preferred full model that included all the significant lipid factors (LDL cholesterol, HDL cholesterol, and lipoprotein(a)), together with smoking, blood pressure, medications, and diabetes. The relative risk of triglyceride is reduced in the full model, but its persistent independence interests us. In fact, the etiological importance of triglyceride-rich lipoproteins might be somewhat greater than suggested by a model that includes correlated variables such as HDL cholesterol and diabetes because a single triglyceride measurement is not a good index of a person’s daily or long-term triglyceridemia. We claimed independent prediction for women, but consistent with literature we cited, not in men. We did not claim that the independent contribution of triglycerides was “substantial”, but that its top quintile relative risk was much greater in women (4.7) than in men (2.1).

A. Richey Sharrett, MD, MPH
Sean A. Coady, MA
Paul D. Sorlie, PhD
Epidemiology and Biometry Program
National Heart, Lung, and Blood Institute
Bethesda, Md

Christie M. Ballantyne, MD
Department of Medicine
Baylor College of Medicine
Houston, Tex

Gerardo Heiss, MD, PhD
Diane Catellier, PhD
School of Public Health
University of North Carolina
Chapel Hill, NC

Wolfgang Patsch, MD
Department of Laboratory Medicine
Landeskrankenstalten
Salzburg, Austria

Serum Triglyceride Concentration and Coronary Heart Disease
Giuseppe Schillaci, Matteo Pirro and Elmo Mannarino

Circulation. 2002;105:e54
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/105/8/e54

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/