Imaging Atherosclerotic Plaque Inflammation With $[^{18}F]$-Fluorodeoxyglucose Positron Emission Tomography

J.H.F. Rudd, MD, MRCP; E.A. Warburton, MD, DM; T.D. Fryer, PhD; H.A. Jones, PhD; J.C. Clark, DSc; N. Antoun, MD, FRCP, FRCR; P. Johnström, PhD; A.P. Davenport, PhD; P.J. Kirkpatrick, MSc, FRCS; B.N. Arch, PhD; J.D. Pickard, MD, FRCS; P.L. Weissberg, MD, FRCP

Methods and Results—Eight patients with symptomatic carotid atherosclerosis were imaged using $[^{18}F]$-FDG-PET and co-registered CT. Symptomatic carotid plaques were visible in $[^{18}F]$-FDG-PET images acquired 3 hours post-$[^{18}F]$FDG injection. The estimated net $[^{18}F]$FDG accumulation rate (plaque/integral plasma) in symptomatic lesions was 27% higher than in contralateral asymptomatic lesions. There was no measurable $[^{18}F]$FDG uptake into normal carotid arteries. Autoradiography of excised plaques confirmed accumulation of deoxyglucose in macrophage-rich areas of the plaque.

Conclusions—This study demonstrates that atherosclerotic plaque inflammation can be imaged with $[^{18}F]$FDG-PET, and that symptomatic, unstable plaques accumulate more $[^{18}F]$FDG than asymptomatic lesions. (Circulation. 2002;105:2708-2711.)

Key Words: atherosclerosis • imaging • nuclear medicine

Inflammation is important in both the pathogenesis and outcome of atherosclerosis.1 Plaques containing numerous inflammatory cells, in particular macrophages, have a high risk of rupture, whereas those with few inflammatory cells are at lower risk.2,3 The current “gold standard” imaging technique for atherosclerosis is x-ray contrast angiography, which provides high-resolution definition of the site and severity of luminal stenoses, but no information about plaque inflammation.

There is a need to quantify plaque inflammation to predict the risk of plaque rupture and to monitor the effects of atheroma-modifying therapies. This is important because recent experimental and clinical studies strongly suggest that hepatic hydroxymethyl glutaryl coenzyme A reductase inhibitors (statins) promote plaque stability by decreasing plaque macrophage content and activity without substantially reducing plaque size and therefore angiographic appearance.4

$[^{18}F]$fluorodeoxyglucose ($[^{18}F]$FDG) is a glucose analogue that is taken up by cells in proportion to their metabolic activity.5 We tested the hypothesis that plaque inflammation could be visualized and quantified non-invasively using $[^{18}F]$FDG-PET in patients with symptomatic carotid artery disease.

Methods

Patient Recruitment
We recruited 8 patients who had experienced a recent carotid-territory transient ischemic attack and had an internal carotid artery stenosis of at least 70%. Patients were excluded if they had either carotid artery occlusion or diabetes. The study protocol was approved by the local ethics committee and the UK Administration of Radioactive Substances Advisory Committee. All patients gave written informed consent.

PET Protocol
PET was carried out using a GE Advance PET scanner (GE Medical Systems). We administered 370 MBq $[^{18}F]$FDG intravenously over 60 seconds. PET images (as 4×5 minute frames) were acquired in 3D mode, at 190 (±6) minutes after $[^{18}F]$FDG administration. This time-point was chosen after preliminary dynamic studies indicated that late imaging provided optimal contrast between the $[^{18}F]$FDG concentration in plaque and the main background region, namely blood. A stiff cervical collar was worn to minimize patient movement. PET images were reconstructed using the 3D reprojection algorithm,6 with corrections applied for attenuation, dead time, scatter, and random coincidences. Rigid body co-registration with CT was performed, using a combination of fiducial markers and internal anatomical landmarks (spinal cord and muscles of the jaw and neck). This resulted in co-registration typically to within 1 mm in each dimension around the stenosis. To estimate plaque $[^{18}F]$FDG concentration, three-dimensional volumes of interest (VOI) were drawn.

Received March 5, 2002; revision received April 19, 2002; accepted April 22, 2002.

From the Division of Cardiovascular Medicine (J.H.F.R., H.A.J., P.L.W.), Division of Stroke Medicine (E.A.W.), Wolfson Brain Imaging Centre (T.D.F., J.C.C., J.D.P.), Department of Radiology (N.A.), Clinical Pharmacology Unit (P.J., A.P.D.), Division of Neurosurgery (P.J.K.), and Centre for Applied Medical Statistics (B.N.A), University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK.

Correspondence to Professor Peter L. Weissberg, Box 110, Level 6, ACCI, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK. E-mail plw@mole.bio.cam.ac.uk

© 2002 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org

DOI: 10.1161/01.CIR.0000020548.60110.76

2708
We performed 18FDG-PET and CT scanning in 8 patients between 48 and 71 years of age (Table). The median time between symptoms and PET study was 3.5 months, and between PET and carotid endarterectomy was 43 days. In all patients, co-registered PET images acquired around 3 hours revealed 18FDG accumulation at the site of the symptomatic plaque (Figure 1).

Six of the 8 patients had contralateral asymptomatic stenoses ranging from 35% to 75%. A comparison was made between the net 18FDG accumulation rate in symptomatic plaques and contralateral asymptomatic lesions. In all cases, symptomatic lesions had higher estimated 18FDG accumulation rates than asymptomatic lesions; the mean symptomatic net accumulation rate was 7.95×10^{-5} with a mean difference between symptomatic and asymptomatic of 2.10×10^{-5} (95% CI: 6.58 to 9.32 10^{-5}), with a mean difference between symptomatic and asymptomatic of 2.10×10^{-5} (95% CI: 0.94 to 3.26 10^{-5}, $P=0.005$).

The CT Protocol
Using a GE Hispeed Advantage CT scanner (GE Medical Systems), helical contrast CT angiograms were acquired from skull base to 3 cm below the level of the carotid bifurcation.

Plaque histology
After imaging, carotid endarterectomy samples from all 8 patients imaged were fixed and stained with hematoxylin and eosin. Immunohistochemistry was performed using anti-macrophage antibodies (CD68, Dako, Elys, UK).

Plaque Autoradiography
In a separate autoradiographic study, 3 carotid plaques from symptomatic patients were incubated whole with 50μCi tritiated deoxyglucose (an in vitro analogue of 18FDG) in 5 mL Medium 199 (Sima) for 60 minutes at 37° C. Paraffin sections of 5 mm thickness were coated with autoradiographic emulsion (LM-1, Amersham), exposed for 6 weeks, developed, and counterstained with hematoxylin and eosin. Control slides were prepared without radioactivity.

Statistical Methods
Results are expressed as mean±SEM with 95% CI in brackets. The paired t test was used to compare net 18FDG accumulation rates in symptomatic and asymptomatic carotid plaques in the same patients.

Results
We performed 18FDG-PET and CT scanning in 8 patients between 48 and 71 years of age (Table). The median time around the area of the stenosis on the contrast CT scan using the Analyze software package (AnalyzeDirect). These regions were then placed onto the co-registered PET images to produce mean 18FDG concentration values (kBq/mL). The mean VOI size was 148 mm3. To determine the plasma 18FDG concentration up to the scan time (input function), venous blood was sampled throughout the PET study. The estimated net 18FDG accumulation rate was determined by dividing the mean decay-corrected plaque VOI 18FDG concentration by the integral of the decay-corrected input function, and is expressed in units of sec$^{-1}$.

Discussion
Anecdotal reports of “hot spots” in blood vessels of patients at high risk of atherosclerosis undergoing whole body 18FDG-PET studies, along with a single study in cholesterol-fed rabbits, have suggested that 18FDG can accumulate in atherosclerotic plaques.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age</th>
<th>Symptoms</th>
<th>Net 18FDG Accumulation Rate (10^{-5} sec$^{-1}$)</th>
<th>Net 18FDG Accumulation Rate (10^{-5} sec$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Symptomatic)</td>
<td>(Asymptomatic)</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>66</td>
<td>R amaurosis ×2</td>
<td>5.88</td>
<td>3.44</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>71</td>
<td>Aphasia ×3</td>
<td>8.05</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>48</td>
<td>R hemiparesis</td>
<td>7.59</td>
<td>4.95</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>68</td>
<td>L amaurosis ×2</td>
<td>8.44</td>
<td>7.71</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>52</td>
<td>L hemiparesis ×6</td>
<td>8.38</td>
<td>4.74</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>63</td>
<td>L hemiparesis ×2</td>
<td>5.77</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>69</td>
<td>L hemisensory</td>
<td>10.87</td>
<td>9.91</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>71</td>
<td>R hemiparesis</td>
<td>8.65</td>
<td>6.49</td>
</tr>
<tr>
<td>Female (%)</td>
<td>Mean age</td>
<td>Mean (SEM)</td>
<td>Mean (SEM)</td>
<td>Mean (SEM)</td>
<td>Mean (SEM)</td>
</tr>
<tr>
<td>25</td>
<td>63.5</td>
<td>7.95 (±0.58)</td>
<td>6.21 (±0.96)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values in the “Symptomatic” and “Asymptomatic” columns are the net 18FDG accumulation rates for symptomatic and asymptomatic plaques, respectively. The absent values in the asymptomatic column represent patients with angiographically normal arteries on the asymptomatic side, in whom there was no significant accumulation of 18FDG compared to background plasma. The bottom row of the table summarises the overall findings. M indicates male; F, female; R, right; and L, left.
By combining PET and CT imaging, we have confirmed that 18FDG accumulates in human carotid artery atherosclerotic plaques, with significantly higher uptake in symptomatic lesions than in asymptomatic lesions. Furthermore, we have demonstrated that the majority of deoxyglucose accumulates in macrophage-rich areas of the plaque. These findings suggest that inflammation is present to a greater degree in symptomatic plaques than asymptomatic plaques.

Taken together, these results suggest strongly that 18FDG-PET may be capable of imaging and potentially quantifying plaque inflammation. This raises the possibility that 18FDG-PET could be used to predict the risk of future plaque rupture, and therefore to target surgery to high-risk carotid stenoses regardless of angiographic appearance. Perhaps more importantly, it might be used to monitor the effectiveness of systemic atheroma-modifying treatments because it is likely that any measurable effects of treatment on inflammation in carotid atheroma will reflect similar changes in other vascular beds, including the coronary arteries.

Before this potential can be realized, further studies are required to determine the precise relationship between 18FDG uptake, plaque macrophage activity, and risk of plaque rupture, and more macrophage-specific PET ligands will be required to image vessels in metabolically active tissues such as the heart and brain. Although PET has limited spatial resolution (≈ 5 mm FWHM for GE Advance), we have demonstrated that co-registration with CT can localize the 18FDG signal to individual atherosclerotic lesions. Because CT angiography cannot accurately measure plaque volume (because remodeling can accommodate large plaques with little impact on lumen diameter), however, we were unable to apply partial volume correction to our data in this study. We are confident, however, that this will be achievable with high-resolution carotid MRI.

In summary, this early study provides the first direct evidence that human atherosclerotic plaque inflammation can be assessed non-invasively by 18FDG-PET, and paves the way for a new approach to atheroma imaging that reflects the cellular pathology of the disease process rather than its anatomical consequences.

Acknowledgments

This work was funded by the British Heart Foundation and an Office of Science and Technology Technology Foresight Challenge Award. Professor Weissberg holds a British Heart Foundation Professorship. Dr Warburton is supported by a Private Patients Plan Mid-Career Fellowship. We are grateful to the staff of the Wolfson Brain Imaging Center, Addenbrookes Neuro-CT scanner, and the Depart-
References

Imaging Atherosclerotic Plaque Inflammation With 18F-Fluorodeoxyglucose Positron Emission Tomography

Circulation. 2002;105:2708-2711; originally published online May 20, 2002;
doi: 10.1161/01.CIR.0000020548.60110.76

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/105/23/2708

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/