Angioplasty is a safe and effective way to unblock coronary arteries. During this procedure, a catheter is inserted into the groin or arm of the patient and guided forward through the aorta and into the coronary arteries of the heart. There, blocked arteries can be opened with a balloon positioned at the tip of the catheter. Initially, angioplasty was performed only with balloon catheters, but technical advances have been made and improved patient outcome has been achieved with the placement of small metallic spring-like devices called “stents” (Figure 1) at the site of the blockage. The implanted stent serves as a scaffold that keeps the artery open.

Angioplasty and stenting techniques are widely used around the world and provide an alternative option to medical therapy and bypass surgery for improving blood flow to the heart muscle. There are, however, limitations associated with angioplasty and stenting, one of which is called “restenosis.”

What does restenosis mean?
Restenosis occurs when the treated vessel becomes blocked again. It usually occurs within 6 months after the initial procedure. Compared with balloon angioplasty alone, where the chance of restenosis is 40%, stents reduce the chance of restenosis to 25%. Therefore, the majority of patients having angioplasty today are treated with stents. Restenosis can occur after the use of stents, and physicians refer to this as “in-stent restenosis.”

Why does in-stent restenosis happen?
When a stent is placed in a blood vessel, new tissue grows inside the stent, covering the struts of the stent. Initially, this new tissue consists of healthy cells from the lining of the arterial wall (endothelium). This is a favorable effect because development of normal lining over the stent allows blood to flow smoothly over the stented area without clotting. Later, scar tissue may form underneath the new healthy lining. In about 25% of patients, the growth of scar tissue underneath the lining of the artery may be so thick that it can obstruct the blood flow and produce an important blockage. In-stent restenosis is typically seen 3 to 6 months after the procedure; after 12 months have passed uneventfully, it is rare.

Who is at high risk for in-stent restenosis?
Patients with diabetes are at increased risk for in-stent restenosis. Further important risk factors relate to the properties of the blocked artery and the pattern of scar tissue growth inside the artery; the more extensive the scar tissue growth, the worse the prognosis is.

What are the symptoms of in-stent restenosis?
In-stent restenosis may produce symptoms that are very similar to the symptoms that initially brought the patient to the interventional cardiologist, such as chest pain triggered by exertion. Diabetic patients, however, may have fewer symptoms, atypical and unusual symptoms, or even no symptoms at all. Fortunately, a heart attack does not usually occur even if in-stent restenosis develops.

How can we detect in-stent restenosis?
After stenting of coronary arteries, patients should follow-up with their cardiologist at regular intervals.

When symptoms occur after the procedure, the cardiologist may recommend diagnostic tests (for instance, an exercise stress test) to evaluate whether the patient is likely to have developed in-stent restenosis or another coronary artery is blocked. If in-stent restenosis is a possibility, the cardiologist may refer the patient for a repeat cardiac catheterization (Figure 2).
New Techniques to Prevent Restenosis: Drug-Eluting Stents

During the last year, a breakthrough for the prevention of in-stent restenosis occurred in the form of a new generation of “drug-eluting” stents. These stents carry a special drug on their surface that prevents scar tissue growth in the artery where the stent is placed, and they therefore markedly reduce the occurrence of in-stent restenosis. Recent data demonstrated that patients treated with drug-eluting stents had decreased incidence of in-stent restenosis compared with those who received bare metal stents. Drug-eluting stents are not yet approved by the FDA, and the results of further studies are awaited.

How do we treat restenosis?

Repeat angioplasty or bypass surgery can be used to treat in-stent restenosis. In addition, local intravascular radiation (brachytherapy) can be used after treating in-stent restenosis with angioplasty to prevent reoccurrence. Brachytherapy uses a radioactive source that is delivered by a coronary artery catheter inside the narrowed artery for a short period of time (about 10 minutes). The source is removed and does not stay in the body. Because the short period of radiation inhibits long-term tissue growth in the treated vessel, it successfully prevents in-stent restenosis. Both β- and γ-irradiation are helpful in this setting. Only a few centers, however, have the special expertise needed to perform brachytherapy.

What can patients do to protect themselves?

After the procedure, patients should lead a heart-healthy lifestyle that includes a diet low in animal fat, regular exercise, blood pressure control, cessation of smoking, and minimal alcohol consumption. Regularly following-up with a cardiologist and taking medications as prescribed are also important preventive measures.

For additional discussion on in-stent restenosis, see www.heartcenteronline.com and www.tctmd.com.

References

Restenosis: Repeat Narrowing of a Coronary Artery: Prevention and Treatment
George Dangas and Frank Kuepper

Circulation. 2002;105:2586-2587
doi: 10.1161/01.CIR.000019122.00032.DF
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/105/22/2586

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/