Vascular Endothelial Growth Factor Enhances Cardiac Allograft Arteriosclerosis

Karl B. Lemström, MD, PhD; Rainer Krebs, MSc; Antti I. Nykänen, MD; Jussi M. Tikkanen, MD; Roope K. Sihvola, MD; Eva M. Aaltola, MSc; Pekka J. Häyry, MD, PhD; Jeanette Wood, PhD; Kari Alitalo, MD, PhD; Seppo Ylä-Herttuala, MD, PhD; Petri K. Koskinen, MD, PhD

Background—Cardiac allograft arteriosclerosis is a complex process of alloimmune response, chronic inflammation, and smooth muscle cell proliferation that includes cross talk between cytokines and growth factors.

Methods and Results—Our results in rat cardiac allografts established alloimmune response as an alternative stimulus capable of inducing vascular endothelial growth factor (VEGF) mRNA and protein expression in cardiomyocytes and graft-infiltrating mononuclear inflammatory cells, which suggests that these cells may function as a source of VEGF to the cells of coronary arteries. Linear regression analysis of these allografts with different stages of arteriosclerotic lesions revealed a strong correlation between intragraft VEGF protein expression and the development of intimal thickening, whereas blockade of signaling downstream of VEGF receptor significantly reduced arteriosclerotic lesions. In addition, in cholesterol-fed rabbits, intracoronary perfusion of cardiac allografts with a clinical-grade adenoviral vector that encoded mouse VEGF164 enhanced the formation of arteriosclerotic lesions, possibly secondary to increased intragraft influx of macrophages and neovascularization in the intimal lesions.

Conclusions—Our findings suggest a positive regulatory role between VEGF and coronary arteriosclerotic lesion formation in the allograft cytokine microenvironment. (Circulation. 2002;105:2524-2530.)

Key Words: angiogenesis • muscle, smooth • arteriosclerosis • transplantation • rejection

Received December 6, 2001; revision received March 6, 2002; accepted March 6, 2002.

From Cardiopulmonary Research Group, Transplantation Laboratory (K.B.L., R.K., A.I.N., J.M.T., R.K.S., E.M.A., P.K.K.), Transplantation Laboratory (P.J.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Department of Medicine, Division of Nephrology (P.K.K.), Department of Cardiothoracic Surgery (K.B.L.), Helsinki University Central Hospital, Molecular Cancer Biology Laboratory (K.A.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; A.I. Virtanen Institute for Molecular Sciences (S.Y-H.), University of Kuopio, Kuopio, Finland; and Novartis Pharma (J.W.), Basle, Switzerland.

Correspondence to Karl Lemström, MD, Cardiopulmonary Research Group, Transplantation Laboratory, University of Helsinki and Helsinki University Central Hospital, PO Box 21 (Haartmaninkatu 3), FIN-00014 University of Helsinki, Finland. E-mail Karl.Lemstrom@helsinki.fi

© 2002 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org DOI: 10.1161/01.CIR.0000016821.76177.D2

2524
or PTK 787, a protein tyrosine kinase inhibitor, 50 mg · kg⁻¹ · d⁻¹ twice a day (Novartis Pharma).16 Cyclosporine A was given 2.0 mg · kg⁻¹ · d⁻¹ SC for the first week, followed by 1.0 mg · kg⁻¹ · d⁻¹ SC as background immunosuppression for the study period of 60 days.

To understand how VEGF regulates cardiac allograft arteriosclerosis, we used adenovirus-mediated mouse VEGF₁₆₄ gene transfer in heterotopic cardiac allografts transplanted from Dutch-Belted to New Zealand White rabbits (Harlan, Bicester, UK). We chose to use rabbits to validate the results in another model in which recipients were treated with low-dose cyclosporine A (3.0 mg · kg⁻¹ · d⁻¹ SC; Novartis) and a 0.5% cholesterol diet (Altromin Int). After the donor heart was harvested, coronary arteries were perfused through the aorta with 1×10⁶ plaque-forming units of adenoviral vector encoding either mouse VEGF₁₆₄ or β-gal under control of the cytomegalovirus (CMV) promoter containing 10⁻⁷ mol/L acetylicholane to permeabilize the endothelium. The heart, with its main arteries cross-clamped, was placed in ice-cold PBS for 30 minutes and thereafter was anastomosed to the right carotid artery and the inferior jugular vein of the recipient.

Adenoviral Constructs

Mouse VEGF₁₆₄ and nucleus-targeted lacZ adenoviruses were produced as described previously.17 Briefly, cDNAs were subcloned into pAdCMV plasmid, constructed by subcloning the human CMV immediate early promoter, the multiple cloning site, and the bovine growth hormone polyA signal from pDNA3 plasmid (Invitrogen, Groningen, Netherlands) into a pAdBIII vector. Replication-deficient E1-E3-deleted clinical GMP-grade adenoviruses were produced in 293T cells. Adenoviruses were analyzed to be free of replication-competent viruses, lipopolysaccharide, mycoplasma, and other microbiological contaminants. The functionality of adenoviruses has been demonstrated in our recent study.17

Histology

Transplant arteriosclerosis was scored as followed from sections stained with Mayer’s hematoxylin-eosin and resorcin fuchsin for internal elastic lamina: grade 0, normal artery with intact internal elastic lamina; grade 1, <10% occlusion of lumen by arterial intimal thickening and proliferation, disruption of internal elastic lamina, and possibly the presence of some foam or vacuolated endothelial cells; grade 2, <50% but >10% occlusion of lumen; grade 3, >50% but <100% occlusion of lumen; and grade 4, 100% occlusion of lumen.18 The slides were examined by 2 independent observers in a blinded review. In the rabbit model, the arteries were divided into 3 categories according to their diameter: large (>120 μm), medium (40 to 120 μm), and small (<40 μm).

Immunohistochemistry

Cryostat sections were stained by the peroxidase ABC method (Vectastain Elite ABC Kit, Vector Laboratories), and the reaction was revealed by 3-amino-9-ethylcarbazole (AEC, Vectastain). The following antibodies were used: rabbit anti-mouse, -rat, and -human VEGF (0.5 μg/mL; sc-152, Santa Cruz); mouse anti-β-galactosidase (Monosan, AM Uden); rabbit anti-mouse VEGF₁₆₄ (2 μg/mL; sc-1836, Santa Cruz); mouse anti-rabbit CD4+ (5 μg/mL; PS5400 mol/L, Biodesign International); and CD8+ (5 μg/mL; PS5402 mol/L, Biodesign) T cells and RAM11+ macrophages (0.3 μg/mL; M0633, Dako). Intimal neocapillary formation was examined by an antibody against CD31 (3.3 μg/mL; M0823, Dako). Specificity controls were performed with the same immunoglobulin concentration of species- and isotype-matched antibodies; for VEGF staining, this involved the use of a working dilution of polyclonal antibody after overnight incubation with a 20-fold molar excess of peptide antigen. The intensity of VEGF immunoreactivity was scored from 0 to 3 as follows: 0, no visible staining; 1, few cells with faint staining; 2, moderate intensity with multifocal staining; and 3, intense diffuse staining of the cells analyzed. Positive staining for inflammatory cell markers was quantified as total number of cells per cardiac cross section.

In Situ Hybridization

Human VEGF antisense and sense RNA probes were generated from linearized pGEM3Zf(+) plasmid (Promega), which contained a fragment corresponding to nucleotides 57 to 639 of human VEGF cDNA. Radiolabeled RNA was synthesized with T7 polymerase and [³⁵S]UTP (Amersham). In situ hybridization was performed as described previously.19 Paraffin sections were treated in prehybridization solutions and hybridized overnight at 52°C. After high-stringency washes for 60 minutes at 65°C, the sections were dehydrated, air-dried, dipped into NTB-2 emulsion (Eastman Kodak), and exposed at 4°C for 4 to 6 weeks. The sections were developed in D19 (Eastman Kodak), fixed in sodium fixative (Eastman Kodak), and counterstained in hematoxylin (Shandon). The intensity of VEGF mRNA expression was scored from 0 to 3 as follows: 0, no visible expression; 1, few cells with faint expression; 2, moderate intensity with multifocal expression; and 3, intense diffuse VEGF mRNA expression of the cells analyzed.

Results

Kinetics of VEGF in Acute and Chronic Rejection

In situ hybridization disclosed that VEGF mRNA is expressed at a minimal level by cardiomyocytes in nontransplanted rat hearts (Figure 1a). In syngeneic grafts, VEGF mRNA expression was mild in cardiomyocytes (Figure 1c). During acute rejection, VEGF mRNA expression was moderate in cardiomyocytes but was saliently expressed in infiltrates of mononuclear inflammatory cells (Figure 1e). In long-term surviving cardiac allografts with mild intimal thickening and preserved myocardium, moderate VEGF mRNA signals were localized to cardiomyocytes and, to some extent, to graft-invading mononuclear inflammatory cells (not shown). In chronically rejecting cardiac allografts with severe arteriosclerotic changes, moderate VEGF mRNA expression was localized to cardiomyocytes of vital myocardium (Figure 1g) and was particularly strong in cardiomyocytes adjacent to infarcted areas. Mild to moderate VEGF mRNA expression was localized to interstitial and pericardial mononuclear inflammatory cells (Figure 1l). We did not observe any specific signal of VEGF mRNA expression in vascular structures in any specimen (Figure 1l).

Immunohistochemical examination localized VEGF protein in cardiomyocytes and media cells of arteries in nontransplanted hearts (Figure 1b) and in syngeneic grafts (Figure 1d). During acute rejection, VEGF immunoreactivity was moderate in cardiomyocytes, but strong expression was localized to infragraft infiltrates of interstitial mononuclear inflammatory cells (Figure 1f). In long-term surviving cardiac allografts with mild arteriosclerotic changes, VEGF protein expression was mild in cardiomyocytes, in interstitial mononuclear inflammatory infiltrates, and in the media, intima, and endothelium of arteries (not shown). In cardiac allografts with severe arteriosclerotic changes, VEGF immunoreactivity was moderate in vital myocardium (Figure 1h) but was particularly strong in cardiomyocytes adjacent to infarcted areas. VEGF protein expression was moderate in interstitial mononuclear inflammatory infiltrates and
in the media, intima, and endothelium of arteries (Figure 1j). Linear regression analysis revealed a clear correlation between intimal thickening and VEGF immunoreactivity in intimal cells, interstitial inflammatory cells, arterial endothelial cells, cardiomyocytes, postcapillary venules/capillaries, and media cells of arteries, in that order (Figure 2).

Figure 1. Kinetics of VEGF mRNA (left) and protein (right) expression in acute and chronic rejection of rat cardiac transplants. a and b, Sections of normal hearts showed faint VEGF mRNA (arrows) and protein expression in cardiomyocytes. c and d, In syngeneic grafts, VEGF mRNA and protein were mildly expressed in cardiomyocytes. e and f, In acute rejection, VEGF mRNA and protein expression was moderate in cardiomyocytes (e, inset) and in graft-infiltrating mononuclear inflammatory cells. g and h, In long-term surviving cardiac allografts with severe arteriosclerotic changes, moderate VEGF mRNA and protein expression was localized to cardiomyocytes. i and j, Note that no VEGF mRNA was localized to arterial wall structures in any specimen, but VEGF protein expression was observed in media, intima, and endothelium of arteries (dotted line indicates internal elastic lamina). Reactions with sense probe did not result in any specific hybridization (g, inset). Incubation of antibody with excess amount of VEGF peptide did not reveal any specific immunoreactivity (h, inset). Hematoxylin counterstaining for immunostaining.

Blockade of VEGFR Activation Reduces Cardiac Allograft Arteriosclerosis

The mean number of arteries analyzed in cardiac allograft cross sections was 37±4 (total of 220 arteries from 6 allografts) in allografts of vehicle-treated rats and 31±6 (total of 184 arteries from 6 allografts) in allografts of PTK
787–treated rats. In cardiac allografts of vehicle-treated rats, 88±7% of arteries (Figure 3A) were affected by intimal thickening, and the mean grade of intimal thickening was 1.8±0.3 (Figures 3b and 3c). Treatment with PTK 787 reduced the percentage of affected arteries to 67±5% (P<0.05; Figure 3A) and the mean grade of intimal thickening to 1.0±0.2 (P<0.05; Figures 3b and 3d) compared with vehicle-treated rats.

VEGF Gene Transfer Enhances Allograft Arteriosclerosis

In rabbit cardiac allografts, moderate transgene expression persisted for 30 days as determined by staining with an antibody against β-galactosidase (Figure 4a) and by X-gal staining (not shown). Expression was robust in endothelial cells of arteries, capillaries, and postcapillary venules and mild in medial cells of arteries and cardiomyocytes. Mild to moderate mouse VEGF164 expression in transfected rabbit allografts was localized to cardiomyocytes (Figure 4b). The mean number of arteries in cardiac cross sections analyzed was 88±7 (total of 616 arteries from 7 allografts) in Ad.lacZ-perfused allografts and 79±7 (total of 472 arteries from 6 allografts) in Ad.VEGF-perfused allografts. Allograft perfusion with Ad.VEGF increased the incidence of arteries with arteriosclerotic lesions from 55±7% to 79±7% (P<0.05; Figure 4e) and the mean grade of intimal thickening from 1.1±0.1 to 1.7±0.1 (P<0.05; Figures 4c, 4d, and 4f) in medium-sized arteries compared with Ad.lacZ-perfused allografts.

VEGF Overexpression Increases Macrophage Influx and Intimal Vessel Formation

Immunohistochemical analysis of allograft cross sections showed that perfusion with Ad.VEGF led to an increased number of graft-infiltrating activated macrophages and a decreased number of CD8+ T cells compared with Ad.lacZ-perfused allografts (P<0.05; Figure 5). No difference was observed in the numbers of CD4+ T cells between the 2 groups. Hardly any CD4+ or CD8+ T cells or macrophages were observed in the developing intima. In addition, we
examined advanced arteriosclerotic lesions for the presence of intimal neovascularization, identified by immunohistochemistry using an antibody against the endothelial cell marker CD31. These newly formed intimal capillaries were not observed in arteries with an intimal thickness score <2. The incidence of intimal neocapillaries in advanced arteriosclerotic lesions was increased 29-fold in Ad.VEGF-perfused allografts compared with Ad.lacZ-perfused allografts (Figure 6; P < 0.01).

Discussion

Our current findings show a positive regulatory role between VEGF and arteriosclerotic lesion formation in cardiac allografts. First, linear regression analysis of rat cardiac allografts demonstrated a strong correlation between intragraft VEGF immunoreactivity and the development of intimal thickening, whereas blockade of signaling downstream of the VEGFR significantly reduced arteriosclerotic lesions. Second, intracoronary perfusion with an adenoviral vector that encoded mouse VEGF164 at the time of transplantation enhanced arteriosclerotic lesions of cardiac allografts in cholesterol-fed rabbits.

Previous studies show that vascular SMCs may produce VEGF in response to hypoxia, cytokines, growth factors, and balloon injury. Therefore, an unexpected finding was that VEGF mRNA expression was absent from the medial layer of arteries examined both during acute rejection and in different stages of arteriosclerotic lesion formation. However, the lack

![Figure 4](image-url)
Figure 4. Intracoronary adenovirus-mediated mouse VEGF164 gene transfer in cardiac allografts in cholesterol-fed rabbits with cyclosporine A 3.0 mg·kg⁻¹·d⁻¹ SC immunosuppression. Transgene expression in myocardium of cardiac allografts after intracoronary delivery of (a) Ad.lacZ (n=7) or (b) mouse VEGF164 (n=6) as analyzed by β-galactosidase expression and by antibody against mouse VEGF from frozen sections, respectively. Representative photomicrographs from medium coronary arteries in (c) Ad.lacZ-perfused and (d) Ad.VEGF-perfused cardiac allografts. Effect on (e) incidence and (f) mean score of intimal thickening in large, medium, and small arteries at 30 days, analyzed from paraffin sections stained with Mayer’s hematoxylin-eosin and resorcin fuchsins for internal elastic lamina (black line, arrows). Data are mean ± SEM, by Mann Whitney U test.
VEGF expression was markedly upregulated in cardiomyocytes of areas with vital myocardium and, in particular, in graft-infiltrating mononuclear inflammatory cells. Our findings clearly argue for the role of alloimmune response as an alternative stimulus capable of modulating VEGF expression during allograft arteriosclerosis.

Given the vasculoprotective role of VEGF in ordinary atherosclerosis, intragraft overexpression of VEGF could have prevented intimal thickening by enhancing the regeneration and functional recovery of vascular endothelium damaged by ischemia-reperfusion injury and the alloimmune response. Our findings raise the crucial question, how does VEGF enhance arteriosclerotic lesion formation in cardiac allografts? Although VEGF does not induce SMC proliferation, VEGF could increase SMC migration directly or indirectly by triggering the release of platelet-derived growth factor-BB from adjacent cells. VEGF may also enhance VEGFR receptor-1–mediated infiltration of macrophages and VEGFR-2–mediated migration of endothelial and smooth muscle progenitor cells from bone marrow into the graft, which may contribute to the formation of transplant coronary arteriosclerosis.5,26–28 VEGF is also a proinflammatory cytokine and stimulates expression of intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin on endothelial cells.29 Here, we show that VEGF overexpression increases intragraft influx of macrophages even 30 days after transfection. This is in accordance with a recent study30 that showed that VEGF enhanced cholesterol-induced atherosclerotic plaque formation in apolipoprotein E–apolipoprotein B100–deficient mice and in cholesterol-fed rabbits, in association with increased macrophage levels in bone marrow and peripheral blood, as well as in the plaques. Ordinary atherosclerotic lesions in apolipoprotein E–deficient mice and in humans contain intimal vessels, and a recent study on angiogenesis inhibitors demonstrated that intimal neovascularization promotes the progression of atherosclerosis.31,32 In the present study, perfusion of cardiac allografts with a clinical-grade adenovirus that encoded mouse VEGF increased the incidence of neovascularization in advanced intimal lesions 29-fold compared with allografts perfused with control virus. Thus, the direct or indirect (macrophage mediated) angiogenic features of VEGF could explain, at least in part, the deleterious effects of VEGF overexpression on intimal thickening.

A major limitation to the present study is that PTK 787 also inhibits platelet-derived growth factor receptor-β at higher concentrations than VEGFR-1 and VEGFR-2. The IC₅₀ for inhibition of VEGFR by PTK 787 is 0.037 μmol/L for VEGFR-2 and 0.077 μmol/L for VEGFR-1, whereas the IC₅₀ for VEGFR-3 is 0.66 μmol/L. The IC₅₀ for inhibition of platelet-derived growth factor receptor-β is 0.58 μmol/L, and for kinases of other enzyme families, up to 10 μmol/L is needed. The dose of 50 mg · kg⁻¹ · d⁻¹ twice a day used in the present study yields PTK 787 plasma levels of >1 μmol/L in the rat. Our unpublished observations in vitro show that PTK 787 does not inhibit SMC proliferation at a concentration of 1 μmol/L, whereas STI 571, a selective PDGFR tyrosine kinase blocker, inhibits SMC proliferation at the same concentration.
In conclusion, our observations suggest that VEGF may enhance cardiac allograft arteriosclerosis, possibly in connection with the chemotactancy of VEGF to SMCs and macrophages, as well as its angiogenic properties, including the induction of intimal capillary formation.

Acknowledgments

This study was supported by grants from the Arne Koskelo Foundation, the Finnish Foundation for Cardiovascular Research, Helsinki University Central Hospital Research Funds, Sigrid Juselius Foundation, and University of Helsinki, Helsinki, Finland.

References

Vascular Endothelial Growth Factor Enhances Cardiac Allograft Arteriosclerosis

Circulation. 2002;105:2524-2530; originally published online May 6, 2002;
doi: 10.1161/01.CIR.0000016821.76177.D2
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/105/21/2524

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/