Brief Rapid Communication

Lethal Perinatal Thrombosis in Mice Resulting From the Interaction of Tissue Factor Pathway Inhibitor Deficiency and Factor V Leiden

Daniel T. Eitzman, MD; Randal J. Westrick, BS; Xiaoming Bi, MD; Sara L. Manning, BS; John E. Wilkinson, MD; George J. Broze, MD; David Ginsburg, MD

Background—Factor V Leiden (FVL) is a common genetic risk factor for thrombosis in humans. The incomplete penetrance of FVL suggests important contributions from other genetic or environmental modifying factors. Variation in the expression of tissue factor pathway inhibitor (TFPI) has also been proposed as a risk factor for venous thrombosis and has been shown to enhance the prothrombotic effect of FVL in vitro.

Methods and Results—To examine the potential in vivo interaction between Tfpi and FvL, we analyzed crosses between mice carrying FvL and a deficiency of TFPI. The FvL,Q/Q genotype was nearly completely fatal in the early perinatal period. Increased fibrin deposition was observed in multiple organs from the FvL,Q/Q fetuses, suggesting disseminated thrombosis.

Conclusions—These observations demonstrate the prothrombotic effect of modest variations in the level of TFPI expression and suggest that TFPI could be an important genetic modifier for the thrombosis associated with FVL in humans. (Circulation. 2002;105:2139-2142.)

Key Words: genetics ■ fibrin ■ gene ■ thrombosis

Complications of venous thrombosis are a common cause of morbidity and mortality. Factor V Leiden (FVL), a missense substitution in the factor V gene resulting in the replacement of arginine at amino acid position 506 by glutamine, is a common polymorphism in European populations and is found in 20% to 50% of patients presenting with venous thrombosis.1-3 However, the relative risk of thrombosis is only 2.7 in FVL carriers.4 This incomplete penetrance is similar to that of other known genetic risk factors for thrombosis. Several reports have documented enhanced thrombosis risk associated with FVL and the cosegregation of other known prothrombotic genetic risk factors, such as mutations in protein C,5 protein S,6 antithrombin III,7 and prothrombin.8

Tissue factor, the primary initiator of blood coagulation, is regulated by tissue factor pathway inhibitor (TFPI).9 TFPI is a Kunitz-type proteinase inhibitor that regulates extrinsic pathway initiation of coagulation by producing factor Xa-mediated feedback inhibition of the factor VIIa/tissue factor (TF) catalytic complex. Animal studies have demonstrated an important in vivo regulatory role of TFPI in vascular thrombosis.10,11 Variations in TFPI expression may be particularly important in the setting of other prothrombotic risk factors. In a synthetic in vitro assay of thrombin generation, reduction of TFPI concentration by 50% resulted in a slight increase in thrombin generation. However, when combined with factor V Leiden, the same reduction in TFPI concentration led to a marked increase in thrombin generation similar to that observed in the complete absence of the protein C pathway.12

To test the hypothesis that modest reductions in TFPI levels will also enhance factor V Leiden associated thrombosis in vivo, we analyzed mice carrying combined mutations in the Fv and Tfpi genes.

Methods

Mice

Mice carrying the murine homologue of the factor V Leiden mutation (FvQ)13 or the TFPI Kunitz domain deletion14 were generated as previously described. These mice were backcrossed to C57BL/6J mice (Jackson Labs, Bar Harbor, Maine) for 4 to 10 generations for FvL and 2 to 7 generations for Tfpi before crosses were performed. Genotyping for Tfpi14 and FvQ status13 was done by polymerase chain reaction analysis of tail DNA using the oligonucleotide primers previously described. All mice were maintained on normal chow in specific pathogen-free (SPF) facilities. All animal care and experimental procedures complied with the principles of Laboratory and Animal Care established by the National Society for Medical Research and were approved by the University of Michigan Committee on Use and Care of Animals.

Received December 8, 2001; revision received March 22, 2002; accepted March 25, 2002.

From the Divisions of Cardiology (D.T.E., X.B.) and Medical Genetics (D.G.), Departments of Internal Medicine, Human Genetics (D.G., S.L.M.), and Pathology (J.E.W.) and the Howard Hughes Medical Institute (R.J.W., D.G.), University of Michigan Medical Center, Ann Arbor, Mich; and the Division of Hematology (G.J.B.), Department of Internal Medicine, Washington University, St Louis, Mo.

Correspondence to Daniel T. Eitzman, MD, University of Michigan Medical Center, MSRB III Room 7301, 1150 Medical Center Dr, Ann Arbor, MI 48109-0644. E-mail deitzman@umich.edu

© 2002 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org

DOI: 10.1161/01.CIR.0000017361.39256.82
Progeny of FvL/Tfpi Matings

<table>
<thead>
<tr>
<th>Matings Pairs</th>
<th>Observed (%)</th>
<th>Expected</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fv(^{QQ}) (n4), Tfpi(^{1/-}) (n2) × Fv(^{QO}) (n4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 3 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>31 (33)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>2 (2)</td>
<td>25</td>
<td><0.01</td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>35 (37)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>26 (28)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>At embryonic day 18.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>7 (18)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>11 (28)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>13 (33)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>8 (21)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-}), Tfpi(^{1/-}) (n10) × Fv(^{QO}), Tfpi(^{1/-}), Tfpi(^{1/-}) (n7) × Fv(^{QO}), Tfpi(^{1/-}) (n10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 3 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>16 (10)</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>0 (0)</td>
<td>12.5</td>
<td><0.005</td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>21 (14)</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>24 (16)</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>46 (30)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Fv(^{QO}), Tfpi(^{1/-})</td>
<td>47 (30)</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Histology

Fetuses were retrieved and fixed as previously described.\(^1\) Fibrin(ogen) immunohistochemistry of selected tissues was performed as previously described.\(^1\) Tissue fibrin(ogen) staining was graded by a blinded observer using a qualitative scale roughly corresponding to the amount of stainable fibrin(ogen) as a percentage of each section (0, 0%; 1, 1% to 10%; 2, 11% to 50%; and 3, 51% to 100%). Adult mice were perfused fixed as previously described,\(^1\) and multiple organs were sectioned and stained with H&E.

Statistical Analysis

The significance of survival differences between groups was determined using the \(\chi^2\) test, and differences in fibrin(ogen) tissue staining were determined using the Student’s \(t\) test.

Results

Effect of Heterozygous Tfpi Deficiency on the FvL Phenotype

To determine the effect of combined mutations in the Fv and Tfpi genes, mice homozygous for FVL (\(Fv^{QO}\)) (N4) were first crossed with heterozygous TFPI-deficient mice (\(Tfpi^{1/-}\)) (N2). Double-heterozygous mice (\(Fv^{QO}\), \(Tfpi^{1/-}\)) were then crossed to homozygous FvL mice (\(Fv^{QO}\), \(Tfpi^{1/-}\)) to generate 4 possible genotypes with an expected frequency of 25% each. As shown in the Table, only 2 of 94 offspring with the \(Fv^{QO}\), \(Tfpi^{1/-}\) genotype were observed at the weaning age of 3 weeks, and 1 of these died shortly after weaning. This marked underrepresentation of the \(Fv^{QO}\), \(Tfpi^{1/-}\) genotype was significantly different than the expected Mendelian frequency. To determine whether the loss of \(Fv^{QO}\), \(Tfpi^{1/-}\) mice was occurring in the perinatal period or earlier in embryonic development, progeny from timed matings were analyzed shortly before birth at 18.5 days after conception. At this late stage in embryonic development, the expected equal mendelian distribution of all potential genotypes was observed. These results indicate that the \(Fv^{QO}\), \(Tfpi^{1/-}\) mice die sometime between birth and weaning, most likely in the immediate postnatal period.

Because we have reported previously that mouse strain background influences the phenotype of the \(Fv^{QO}\) mutation, survival analysis of \(Fv^{QO}\), \(Tfpi^{1/-}\) mice was repeated after FvL and \(Tfpi^{++}\) mice had been backcrossed to the pure C57BL/6J strain for a total of 10 and 7 generations, respectively (Table). Of 154 offspring analyzed from this cross, no surviving \(Fv^{QO}\), \(Tfpi^{1/-}\) mice were observed. These results confirm the lethality of the \(Fv^{QO}\), \(Tfpi^{1/-}\) genotype.

Histology

As shown in Figure 1, extensive fibrin(ogen) staining was detected in the liver, lung, and kidney from \(Fv^{QO}\), \(Tfpi^{1/-}\) neonates, whereas only scant staining was noted in \(Fv^{QO}\), \(Tfpi^{++}\) neonates. The mean (±SD) fibrin(ogen) staining score for multiple liver, lung, and kidney sections from 5 \(Fv^{QO}\), \(Tfpi^{1/-}\) neonates was 2.3±0.5 compared with 1.0±0.2 for 4 \(Fv^{QO}\), \(Tfpi^{++}\) neonates (P<0.0001). The sole surviving \(Fv^{QO}\), \(Tfpi^{1/-}\) adult mouse was found to be circling and gasping in the cage at ≈1 year of age. The mouse was killed, and autopsy revealed an occluded inferior vena cava (gross observation) with dilated accessory venous circulation evident. Histology showed intravascular thrombosis in liver and lung with bilateral renal infarctions (Figure 2).

Discussion

Factor V Leiden (FVL) has a prevalence of 2% to 7% in most European populations\(^1,3,16\) and is the major known genetic risk factor for thrombosis in humans. In a small subset of patients, thrombosis is associated with coinheritance of other prothrombotic gene mutations.\(^5,8\) However, the potential contribution of additional genetic risk factors in most patients remains unknown. Mice homozygous for the murine FvL mutation exhibit spontaneous thrombosis that is variable depending on the background genetic strain, indicating the presence of strain-dependent genetic modifiers of thrombosis.\(^1,3\) Thus this model is useful for evaluating the impact of potential modifier genes on thrombophilia and recently has been used to unmask the subtle prothrombotic phenotype of mice deficient in protein Z.\(^17\) Protein Z–deficient mice appeared indistinguishable from their littermates. However, when crossed with FvL mice, homozygous protein Z–deficient mice who are also heterozygous or homozygous for FvL exhibited a partial or complete perinatal lethal phenotype, respectively. Taken together with the previous protein Z observations, these data suggest that novel interactions of FVL with multiple other genetic loci may be an important determinant of thrombosis penetrance or severity.

Polymorphisms involving human TFPI recently have been proposed to contribute to venous thrombosis risk, although this is controversial.\(^18\) Mice homozygous for an inactive Tfpi allele generated by gene targeting exhibit an embryonic lethal phenotype that seems to be attributable to disseminated thrombosis. Even though heterozygous mice exhibit only 50% of functional TFPI activity in the serum compared with wild-type littermates, they develop normally without evi-
dence of spontaneous thrombosis. Our observation of a synthetic lethal interaction between FVL and heterozygous TFPI deficiency is consistent with a previous in vitro study demonstrating that combination of the FVL mutation and reduced TFPI leads to a marked increase in thrombin generation. The report of significantly decreased free and total plasma TFPI levels in symptomatic patients with FVL compared with asymptomatic FVL patients additionally supports the potential relevance of our observations in this murine model system for FVL in humans.

We previously have demonstrated that heterozygous Tfpi deficiency in mice affected time to occlusive thrombosis after endothelial injury at the site of an atherosclerotic plaque. However, no difference in the time to occlusion was noted in the absence of preexisting vascular disease. In the present study, we have demonstrated that heterozygous Tfpi deficiency is uniformly lethal in mice that are also homozygous for FvL, whereas neither defect alone results in significant mortality. These findings highlight the sensitivity of this genetic cross for detecting prothrombotic gene interactions and suggest that the FVL mouse may constitute a powerful tool for sensitized screening of potential genetic risk factors for thrombosis.

Although the precise cause of death in these animals has not been definitively identified, a disseminated thrombotic process occurring shortly after birth is likely, judging by the widespread increased tissue fibrin deposition observed in neonates. These results demonstrate a critical in vivo interaction between TFPI and FVL in the regulation of thrombin generation. Taken together, these observations suggest that modest variation in TFPI expression could be an important genetic modifier for the thrombosis associated with factor V Leiden in humans.

Figure 1. Antifibrinogen staining of tissues from neonates.

Figure 2. H&E-stained tissues from surviving adult FvQ/Q/Tfpi++/ mouse demonstrating evidence of thrombosis in liver (A) and lung (B) along with old infarction in kidney (C).

Acknowledgments

This work was supported by National Institutes of Health grants HL-35989 and PO1 HL5734 (to Dr Eitzman), HL 34462 (to Dr...
Broze), and PO1 HL5734 (to Dr Ginsburg). Dr Ginsburg is a Howard Hughes Medical Institute investigator.

References
Lethal Perinatal Thrombosis in Mice Resulting From the Interaction of Tissue Factor Pathway Inhibitor Deficiency and Factor V Leiden

Daniel T. Eitzman, Randal J. Westrick, Xiaoming Bi, Sara L. Manning, John E. Wilkinson, George J. Broze and David Ginsburg

Circulation. 2002;105:2139-2142; originally published online April 15, 2002;
doi: 10.1161/01.CIR.0000017361.39256.82

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/105/18/2139

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/