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The prevailing concept of the heart’s response to changes
in its environment is a complex network of inter-

connecting signal transduction cascades.1 In such a scheme,
the focus is on communication of various cell surface
receptors, heterotrimeric G-proteins, protein kinases, and
transcription factors.2–4

Diabetes is a disorder of metabolic dysregulation. At first
glance it appears that metabolism and the metabolic conse-
quences of diabetes do not fit into this signal-response
coupling scheme. Two questions arise. First, is metabolism
simply an “effect” rather than a “cause” of adaptation?
Second, is metabolism only a by-product of signal
transduction-induced adaptation, allowing equilibrium (and
therefore maintenance of function) in the presence of the
other adaptational responses?

An alternative is to take a new, less restricted view of
metabolism. Beyond its stereotypical function as a provider
of ATP, alterations in metabolic flux within the cell create
essential signals for the adaptation of the heart to situations
such as diabetes. This concept is novel for the heart, but has
already been considered in the liver. Like the phosphorylation
events occurring in signal transduction cascades, changes in
metabolic flux are extremely rapid. For example, transloca-
tion of GLUT4 to the cell surface in response to insulin
occurs within a second.5 We have previously found that
increases or decreases in workload also change metabolic
fluxes in seconds.6,7 Therefore, changes in metabolites are
rapid enough to allow them to act as signaling molecules.

Many of these acute changes in metabolic flux are brought
about by the same signal transduction cascades believed to be
involved in the adaptation of the heart to changes in its
environment. Phosphatidylinositol 3-kinase, Ca2�, and pro-
tein kinase C, all of which play a role in cardiac adaptation,
regulate metabolism in the heart.8,9 Metabolic signals there-
fore provide a new dimension to the preexisting concepts of
cardiac adaptation, as illustrated in Figure 1.

Fatty Acid-Regulated Gene Expression
Diabetes is as much a disorder of fatty acid metabolism as it
is a disorder of glucose metabolism.10 In the normal cardiac

myocyte, fatty acids serve many essential functions. These
functions include roles as fuels, mediators of signal transduc-
tion (eg, activation of various protein kinase C isoforms,
initiation of apoptosis), ligands for nuclear transcription
factors (eg, peroxisome proliferator-activated receptor �
[PPAR�]), and essential components of biological mem-
branes.11–17 Not surprisingly, the levels of intracellular fatty
acids and their derivatives are tightly regulated. Loss of this
regulation, and subsequent elevation of intracellular fatty
acids and lipids (and abnormalities in lipid handling) have
been associated with various pathologies, including insulin
resistance, pancreatic dysfunction, and cardiotoxicity.14,18–21

One way in which mammalian organisms respond to eleva-
tions in fatty acid levels is by increasing the expression of
various proteins involved in fatty acid utilization, and this has
been studied in tissues including cardiac and skeletal mus-
cle.22–24 Fatty acid induced genes known to be involved in
cardiac fuel selection and mitochondrial function are listed in
Table 1.22,25–29 The mechanism by which fatty acids activate
the transcription of these genes is through activation of the
nuclear receptor PPAR�.

On binding of fatty acids to PPAR�, the ligand bound
receptor heterodimerizes with 9-cis retinoic acid receptor
(RXR).30 This functional dimer is able to activate the tran-
scription of genes whose promoter contains the PPAR re-
sponse element (PPRE; also known as fatty acid response
element [FARE]) through recruitment of histone acetyltrans-
ferases (HATs), thereby increasing access to the transcrip-
tional start site.31 Cofactors that bind to the PPAR�/RXR
heterodimer include CBP/p300, PBP/TRAP220, PGC-1, and
SRC-1. Of these, PGC-1 is highly expressed in the heart.32

Fatty acids are also able to alter cellular metabolism,
function, and gene expression through PPAR�-independent
mechanisms. Once transported into the cell, long chain fatty
acids are activated by a thioester linkage to coenzyme A
(CoA). Long chain fatty acyl-CoAs (LCFACoA) are subse-
quently transported into the mitochondrion via carnitine
palmitoyltransferase I (CPTI), and enter �-oxidation. When
the rate of fatty acid transport into the myocyte exceeds that
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of transport into the mitochondrion (eg, because of excessive
fatty acid availability and/or CPTI inhibition by malonyl-
CoA), cytosolic LCFACoA levels increase. The latter are
utilized in the synthesis of both diacylglycerol (DAG) and
ceramide. DAG is an allosteric activator of several PKC
isoforms. Increased DAG levels and PKC activity are ob-
served in myocytes isolated from diabetic animals.19,33

Chronically activated PKC has been suggested to play a role
in the development of insulin resistance.34 Ceramide, whose
levels are elevated in the Zucker Diabetic Fatty (ZDF) rat
heart, can initiate apoptosis and cardiac dysfunction.20,35 In
addition, fatty acids may affect cellular processes through
reactive oxygen species.36

Glucose-Regulated Gene Expression
As is true for fatty acids, glucose has multiple functions in the
cardiac myocyte, extending far beyond its use as an energy
source. Once transported into the cardiomyocyte via specific
regulatory transporters (glucose transporters [GLUTs] 1, 4,
and 8), glucose becomes phosphorylated by hexokinase to
generate glucose 6-phosphate. The latter has multiple poten-
tial fates. These include flux through the glycolytic pathway
and full oxidation via the Krebs cycle (or conversion to
lactate), storage as glycogen, entry into the pentose phosphate
pathway (PPP) with concomitant ribose formation, carbon

utilization for the generation of alternative cellular compo-
nents, and entry into the hexosamine biosynthetic pathway.
Increased flux through the latter pathway leads to increased
O-linked glycosylation of proteins, affecting various pro-
cesses such as transcription, translation, and protein stabili-
ty.37–39 As exemplified in Figure 2, glucose is more than just
an energy source for the heart. Failure to adequately control
intracellular glucose levels (glucotoxicity) has also been
implicated in the development of insulin resistance and in the
generation of reactive oxygen species (ROS) in various
tissues.40,41

Compared with fatty acids, relatively little is known about
the effects of glucose metabolism on cardiac gene expression.
It has been known for some time that glucose availability
affects the expression of several specific genes in the liv-
er.42–44 These genes include those encoding for pyruvate
kinase (PK), acetyl-CoA carboxylase � (ACC�), fatty acid
synthase (FAS), and Spot 14 (S14). Through investigations
concentrating on the glucose/carbohydrate responsive ele-
ments (GIRE/ChoRE) in the promoter regions of these
various glucose regulated genes, a number of candidate
transcription factors have been identified that are believed to
be involved in glucose mediated gene expression. Upstream
stimulatory factor (USF), stimulatory protein 1 (Sp1), and
sterol regulatory element binding protein 1 (SREBP1) have

Figure 1. Hypothetical involvement of metabolism
in cardiac adaptation. The central dogma for the
adaptation of the myocardium to various stimuli is
depicted on the left side of the figure. Activation of
G-protein coupled receptors (GPCR), receptor
tyrosine kinases (RTK), and integrins in response
to multiple stimuli result in the activation of numer-
ous signaling cascades, such as those employing
calcium (Ca2�), protein kinase C (PKC) isoforms,
calcineurin, Ca2�/calmodulin kinase (CaMK),
mitogen-activated protein kinases (MAPKs), and
phosphatidylinositol 3-kinase (PI3K). The latter
affect transcription and translation, processes
essential for the chronic adaptation of the heart.
The current review hypothesizes that alterations in
metabolism generate essential components
involved in this adaptation (right).

TABLE 1. Fatty Acid–Induced Genes and Their Role in Fuel Selection and Mitochondrial Metabolism

Gene Encoding for Protein Function References

Fatty acid translocase (FAT/CD36)
Fatty acid transport into the cell

113, 114

Fatty acid transport protein (FATP)

Fatty acid binding protein (FABP) Binding to fatty acids in cytosol 115

Malonyl-CoA decarboxylase (MCD) Removal of malonyl-CoA, an inhibitor of mCPTI 27, 116

Acyl-CoA synthetase (ACS) Activation of fatty acids 117

Muscle-specific carnitine palmitoyltransferase I
(mCPTI)

Long chain fatty acyl-CoA transport into the
mitochondrial matrix

25

Acyl-CoA dehydrogenases
3-hydroxyacyl-CoA dehydrogenases

�-Oxidation of fatty acyl-CoAs in the
mitochondrial matrix

22, 26

Pyruvate dehydrogenase kinase 4 (PDK4) Phosphorylation and inhibition of pyruvate
dehydrogenase

29

Uncoupling protein 3 (UCP3) Regulator of mitochondrial membrane potential
(?), fatty acid metabolism (?), ROS generation (?)

28
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all been shown to play roles in liver and fat cell glucose
sensing.42–44

There are two known isoforms of USF, designated USF1
and USF2. They are encoded by different genes. These
ubiquitously expressed transcription factors are members of
the basic helix loop helix/leucine zipper (bHLH/LZ) family,
that recognize E-boxes within promoters of target genes, such
as PK and S14. USF binds to E-boxes as dimers (either homo-
or heterodimers). Amphipathic �-helices located C-terminal
to the basic domain allow dimerization through projection of
hydrophobic residues on the exterior of the protein, thereby
promoting protein-protein interaction.

Sp1 is a ubiquitous transcription factor, able to bind to the
promoter region of multiple target genes. The consensus is
that Sp1 maintains basal rates of transcription of constitutive
genes. However, Sp1 appears to be regulated at multiple
levels, suggesting a role that extends beyond the initial image
of basal transcription. Of the stimuli known to affect Sp1
DNA binding activity, glucose availability is one. Work
investigating glucose-induced ACC� expression was the first
to suggest the involvement of Sp1 in glucose sensing.45

Recent work on the FAS gene promoter has suggested a
role of SREBP1 in glucose sensing.46 SREBP, also known as
ADD (adipocyte determination and differentiation factor), is
encoded by 2 genes, SREBP1/ADD1 and SREBP2/ADD2.
The encoded proteins, of which splice variants exist, are
bHLH/LZ capable of binding to E-boxes, reminiscent of
USF. In adipocytes, the E-box in the promoter for the FAS
gene has been shown to be essential for transcriptional
induction.47 Classically, SREBP is regulated by proteolytic
cleavage, releasing this transcription factor from its endoplas-
mic reticulum anchor when intracellular cholesterol levels are
depleted.48

The mechanism(s) by which glucose availability affects the
DNA binding activity of these transcription factors is (are)
not known precisely. Extensive evidence from studies on
glucose sensing mechanisms in the liver strongly suggests
that reversible phosphorylation is involved. Protein phospha-

tase inhibitors, such as okadaic acid, block the induction of
glucose regulated genes without effecting glucose metabo-
lism.49 An interesting question is how glucose availability
affects protein phosphorylation. A suggested mechanism
involves AMP-activated protein kinase (AMPK). AMPK has
been termed the fuel gauge of the cell.50 When the “energy
charge” of the cell decreases (decreased ATP/AMP and
PCr/Cr ratios), AMPK becomes activated.51 AMPK compen-
sates for the energetic imbalance by increasing metabolic
substrate availability (increased glucose transport by in-
creased translocation of GLUT4 to the cell surface and
increased lipolysis through activation of lipases) and metab-
olism (increased �-oxidation by lowering intracellular
malonyl-CoA levels and increased glycolysis by increasing
intracellular fructose 2,6-bisphosphate).52,53 Long-term acti-
vation of AMPK affects gene expression in both skeletal
muscle and liver.54 Treatment of hepatocytes with a pharma-
cological activator of AMPK, 5-aminoimidazole-4-
carboxyamide ribonucleoside (AICAR), blocks glucose-
induced changes in gene expression.55 Thus, when glucose
levels are low, a combination of reduced glucose metabolites
and increased AMPK activity inactivate glucose sensing
transcription factors. In contrast, increased glucose availabil-
ity, and therefore decreased AMPK activity, prevents phos-
phorylation of components of glucose sensing.

Protein phosphatase 2a (PP2a) appears to be involved in
glucose sensing, as suggested by inhibitor studies in the liver
(Figure 2, left). PP2a is allosterically activated by xylulose
5-phosphate, a PPP intermediate,56,57 that accumulates during
increased glucose uptake and subsequent increased flux
through the PPP (both the oxidative branch and the non-
oxidative branch, through glucose 6-phosphate dehydroge-
nase and transketolase respectively). Xylulose 5-phosphate
activates PP2a and the dephosphorylation of glucose sensing
components, either the transcription factors themselves (eg,
Sp1) or associated proteins (eg, glucose regulated factor
[GRF] binding with USF1/2).

A second mechanism of glucose sensing involves revers-
ible covalent modification by O-linked glycosylation of

Figure 2. Pathways of glucose sensing. An uncou-
pling of pyruvate oxidation from glycolysis, either
due to an acceleration of glucose transport (fetal,
hypertrophied, and atrophied hearts) or inhibition
of pyruvate oxidation (diabetes), will result in an
accumulation of glycolytic intermediates. Increased
intracellular levels of xylulose 5-phosphate from
either the oxidative or non-oxidative branches of
the pentose phosphate pathway will result in acti-
vation of protein phosphatase 2a (PP2a). The latter
dephosphorylates and activates glucose sensing
transcription factors. Increased flux through the
hexosamine biosynthetic pathway results in
increased intracellular levels of UDP-N-
acetylglucosamine, which is used directly in
O-linked glycosylation of target proteins (eg, Sp1,
c-myc).
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proteins. Such O-linked glycosylation of signaling proteins
occurs at serine and threonine residues otherwise used for
regulatory phosphorylation.58 The level of cytosolic UDP-N-
acetyl glucosamine, the principal end product of the hex-
osamine biosynthetic pathway and the donor substrate used
for protein glycosylation, is rate limiting for the
O-glycosylation of proteins (Figure 2, right).59 Levels of
UDP-N-acetyl glucosamine are in turn dependent on the
uptake and metabolism of glucose, as well as the activity of
glutamine:fructose 6-phosphate amidotransferase (GFAT),
the rate limiting enzyme in hexosamine biosynthesis.60,61 Sp1
is regulated by both reversible phosphorylation and reversible
glycosylation. Dephosphorylation of Sp1 in response to
increased glucose availability promotes DNA binding.62 Gly-
cosylation greatly increases the stability of the Sp1 protein,
thereby enabling promotion of transcriptional initiation.38

Lastly, glucose sensing components might themselves be
under transcriptional control. Insulin has been shown to
increase the expression of the SREBP1 in adipocytes.47

Evidence therefore exists that glucose, through increased
insulin secretion, is able to increase the transcription of
SREBP1.

Metabolic Adaptation
Metabolic adaptation appears essential for the maintenance of
contractile function of the heart under different stresses. How
can metabolic adaptation, which occurs relatively rapidly,
play a role in the transcriptional adaptation of the myocardi-
um? The following section provides a novel hypothesis for a
role of metabolism in the adaptation of the heart. This
hypothesis is summarized in Figures 2 and 3 (left).

Metabolism as a Common Mechanism
of Adaptation
At the level of contractile protein gene expression, rodent
models of both diabetes and pressure overload result in
cardiac re-expression of fetal genes, with concomitant adult
gene repression (Table 2). This adaptation is believed to be
essential for the maintenance of contractile function of the
adapted heart. We have found that the unloaded, atrophied

heart also reverts to a fetal pattern of gene expression.63

Therefore, one or more common signals must be present in
the fetal, diabetic, hypertrophied, and unloaded heart. This
common factor is most likely glucose. The evidence is as
follows (Figure 2).

Glucose is the primary fuel used by the fetal heart. At birth,
increased dietary fatty acids result not only in increased

Figure 3. Metabolic adaptation and maladaptation
of the heart. Various stimuli can result in rapid
alterations in fatty acid and glucose metabolites
within the cardiomyocyte. These metabolites then
act as essential signaling molecules for the adap-
tation process. However, if the intensity of the
stimulus is too great, or multiple stimuli act simul-
taneously (eg, pressure overload plus diabetes),
pathological accumulation of metabolites results in
metabolic maladaptation.

TABLE 2. Transcriptional Alterations During Pressure Overload
and Diabetes

Hypertrophy Diabetes

Contractile proteins

�-MHC 2 2

�-MHC 1 1

Cardiac �-actin 2 2

Skeletal �-actin 1 1

Ion pumps

�2 Na/K-ATPase 2 ?

SERCA 2a 2 2

Metabolic proteins

GLUT1 � 2

GLUT4 2 2

Muscle CPT-1 2 �

Liver CPT-1 � �

mCK 2 2

PPAR� 2 2

PDK4 2 1

MCD 2 1

UCP2 2 �

UCP3 2 1

Protooncogenes

c-fos 1 2

Summary of transcriptional changes in the heart in animal models of
hypertrophy (pressure overload-induced) and diabetes (streptozotocin-
induced). With the exception of genes encoding for fatty acid metabolizing
proteins, the transcriptional adaptation of the heart is similar in response to
these two situations.
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availability of fatty acids as a fuel, but also result in activation
of the genes involved in fatty acid metabolism, an effect
which is mediated in part by PPAR�.64–66 During hypertro-
phy, the heart mimics the fetal situation by increasing reliance
on glucose as a fuel while depressing fatty acid utiliza-
tion.67,68 Like the hypertrophied heart, the atrophied heart
increases reliance on glucose as its fuel for respiration.69

Therefore, in fetal, hypertrophied, and atrophied hearts,
glucose uptake and metabolism are increased. In addition,
this high rate of glucose uptake exceeds the rate of pyruvate
oxidation. The dissociation of glycolysis and pyruvate oxida-
tion results in increased levels of glucose metabolites.

The diabetic heart increases reliance on fatty acids as a
fuel. Fatty acids inhibit glucose oxidation at the level of the
pyruvate dehydrogenase complex (PDC). PDC catalyzes the
committed step for carbohydrate oxidation. Increased mito-
chondrial acetyl-CoA levels (due to increased fatty acid and
ketone body utilization) and phosphorylation by PDK4 (due
to PPAR�-mediated induction) both inhibit PDC.29,70 In
addition, increased citrate levels in the diabetic heart due to
increased fatty acid utilization result in potentiation of inhi-
bition of phosphofructokinase (PFK) by ATP. Such an
inhibition will prevent further the full oxidation of glucose.
Despite decreased glucose transporter expression and de-
creased insulin-mediated glucose transport, the rates of glu-
cose uptake by the diabetic heart, within the diabetic envi-
ronment, are comparable to those observed in normal hearts
because of the hyperglycemia.71,72 Thus, with normal glucose
influx into the cardiomyocyte, and the blocks at PFK and
PDC, glucose metabolites accumulate. This sequence is
consistent with Randle’s hypothesis73 that fatty acids inhibit
glucose oxidation more than glycolysis, and glycolysis more
than glucose uptake. Intracellular concentrations of glucose,
glucose 6-phosphate, fructose 6-phosphate, glycogen, pyru-
vate, and lactate have all been shown to be increased in the
diabetic heart.74,75 Glycolytic intermediates therefore accu-
mulate when the glycolytic flux exceeds the rate of glucose
oxidation.

By what mechanism can glycolytic intermediate accumu-
lation play a role in the adaptation of the heart? Here we refer
again to the liver as an organ in which glucose regulated gene
expression has already been investigated. The 2 major path-
ways of transcription factor activation by glucose metabolites
are reversible phosphorylation and glycosylation (see above).
There is considerable circumstantial evidence that these
pathways exist in the heart as well. When glucose flux
increases in the hepatocyte, so too does flux through the PPP,
resulting in increased xylulose 5-phosphate levels that acti-
vate PP2a.56,57 Appreciable flux through the non-oxidative
PPP occurs in the heart.76 In addition, pressure overload
induces glucose 6-phosphate dehydrogenase (G6PDH), the
enzyme catalyzing the flux generating step in the oxidative
PPP.77 It is therefore reasonable to assume that xylulose
5-phosphate levels increase in the hypertrophied heart due to
the combined increase in glucose flux into the cardiomyocyte
and increased G6PDH activity.

We have recently found that O-linked glycosylation may
be increased in the hypertrophied heart (M.E. Young, DPhil,
et al, unpublished data, 2002). Two isoforms of GFAT are

expressed in the rodent heart. Of these 2 isoforms, GFAT2 is
induced in the hypertrophied heart. UDP-N-acetyl glu-
cosamine levels are also elevated in the hypertrophied heart,
likely because of a combination of increased glucose influx
into the cardiomyocyte and induction of GFAT2, which
catalyzes the flux generating step of the hexosamine biosyn-
thetic pathway (M.E. Young, DPhil, et al, unpublished data,
2002). As glycolytic intermediates accumulate in the diabetic
heart, it is likely that O-linked glycosylation increases as
well.

What is the evidence that altered metabolism plays a role in
the adaptation of the heart to diabetes and/or other sustained
stimuli? The first question to be answered is whether altered
metabolism is required at all to modulate gene expression.
Work investigating the role of substrate switching in the
hypertrophied heart suggests that alterations in metabolic flux
are essential for the adaptation of the heart to pressure
overload.78 As mentioned, the nuclear receptor PPAR� is an
essential component in cardiac substrate switching. Reactiva-
tion of PPAR� in the hypertrophied heart prevents substrate
switching, and causes contractile dysfunction, suggesting that
altered metabolism is essential for the adaptation of the
heart.78 In addition, these studies found that the induction of
the fetal isoform of �-actin by pressure overload was com-
pletely blocked when PPAR� was reactivated. The induction
of skeletal �-actin has previously been shown to be depen-
dent on the activation of Sp1 in response to pressure over-
load.79 It is therefore possible that the prevention of skeletal
�-actin induction by PPAR� reactivation in the hypertro-
phied heart is due to prevention of Sp1 activation by glucose
metabolites. Whether diabetes activates Sp1 in the heart is not
known.

Previously we addressed the question of whether substrate
switching is essential for the adaptation of the diabetic heart.
Induction of diabetes in an animal model in which PPAR� is
inactivated is an obvious way to test such a hypothesis.
Although such an experiment has not yet been performed,
much of the metabolic adaptation in the diabetic heart is akin
to that during the adaptation of the heart to fasting. When
PPAR� knockout mice are fasted, the animals develop
contractile dysfunction and die.24 Fatal cardiac dysfunction in
this model appears to be due to the accumulation of lipids
within the cardiomyocytes (so-called lipotoxicity).24 Thus, a
failure of the myocardium to respond to increased fatty acid
availability, through activation of PPAR�-regulated genes,
results in heart failure.

Transcription of Genes Encoding for Contractile
Proteins and SERCA2a are Regulated by
Metabolism in the Heart
As mentioned above, the contractile protein skeletal �-actin,
which is induced in the heart with pressure overload, me-
chanical unloading and diabetes, appears to be a glucose-
regulated gene. The expression of myosin heavy chain �
(MHC�), the adult isoform in the rodent, decreases in
response to either pressure overload, unloading, or diabetes,
whereas the expression of the fetal isoform, MHC�, increases
in response to these stresses.63,80,81 Further evidence to
support the hypothesis that glucose regulates sarcomeric gene
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expression in the heart came from studies in which substrate
switching was prevented in response to pressure overload
through control of dietary intake. Feeding the animals with an
isocaloric, low carbohydrate, high fat diet, thereby forcing the
heart to utilize fatty acids, abolishes this MHC isoform
switching in response to pressure overload (M.E. Young,
DPhil, et al, unpublished data, 2002). Likewise, when meta-
bolic adaptation is blocked in the diabetic heart, through
pharmacological inhibition of fatty acid oxidation by either
methyl palmoxirate or etomoxir, MHC isoform switching is
attenuated.82,83

The above experimental strategies provide further evidence
for glucose regulated gene expression in the heart. Although
the exact mechanism by which glucose affects MHC isoform
expression is presently unknown, examination of the promot-
ers of both MHC� and MHC� show potential Sp1 and USF
binding sites.84,85 Taken together, these observations suggest
that the MHC isoforms, in addition to skeletal �-actin, are
glucose regulated genes. It is not surprising that genes
encoding for proteins directly involved in energy consump-
tion are influenced by the metabolic status of the cell.

Because heart muscle from diabetic animals exhibits a
slow rate of relaxation (diastolic dysfunction), the sarco-
(endo-) plasmic reticulum Ca2� ATPase (SERCA) 2 has been
considered a major site for contractile dysfunction.86

SERCA2 is regulated transcriptionally by the metabolic
status of the cardiomyocyte. SERCA2a, the major splice
variant in the heart, mRNA, and activity both decrease in
response to pressure overload and diabetes.80,87–89 During
both of these situations we have hypothesized that the
discordance between the influx of glucose into the cell and
the rate of pyruvate oxidation will result in increased glucose
metabolites, thereby activating glucose-regulated transcrip-
tion factors. Etomoxir, an irreversible inhibitor of long chain
fatty acid oxidation, increases the rate of glucose oxidation by
relieving the inhibition of PDC.90 In doing so, etomoxir
would be expected to decrease the levels of glucose metab-
olites in the cell. Treatment of rats with etomoxir blocks the
decrease in SERCA2a in response to either pressure overload
or diabetes.91–93 Indeed, the promoter of SERCA2a contains
both E-boxes and Sp1 binding sites, consensus sequences on
which known glucose sensing transcription factors to bind.94

Consistent with a role of glucose metabolites in the regulation
of SERCA2a gene expression is a recent study which re-
ported that perfusion of hearts with glucose lowered
SERCA2a mRNA levels.95 An understanding of the mecha-
nisms regulating SERCA2a transcription and activity are of
particular interest in light of reports showing that the activity
of this Ca2�-pump, which is closely related to its level of
expression, affects the contractile function of the heart.96

Glucose Downregulates Fatty Acid Utilization at
the Level of Gene Expression
As discussed previously, glucose and fatty acid oxidation are
closely interrelated. Fatty acids are able to inhibit the utili-
zation of glucose acutely, as described by Randle et al.73

Conversely, glucose is able to inhibit fatty acid oxidation in
the heart (and skeletal muscle), most likely through elevation
of intracellular levels of malonyl-CoA.12,97 Evidence also

exists suggesting that long-term elevations in glucose avail-
ability can block fatty acid utilization at the level of gene
expression. Recent work in islet cells have shown that
glucose exposure decreases the expression of PPAR�, as well
as several PPAR� regulated genes involved in fatty acid
metabolism.98 If this glucose repression of PPAR� expression
also occurs in the heart, it may be the mechanism by which
PPAR� expression is low in fetal, hypertrophied, atrophied,
and diabetic hearts.28,32,99 In addition, MCAD expression is
directly repressed by Sp1 activation in the hypertrophied
heart.100 Glucose can therefore decrease fatty acid utilization
not only through repression of PPAR� expression, but also
through activation of glucose sensing transcription factors
directly binding to the promoter of fatty acid metabolizing
genes.

Metabolic Adaptation of the Heart in Diabetes
We offer the following hypothesis for the metabolic adapta-
tion of the heart in diabetes. Type I (insulin-dependent)
diabetes mellitus is characterized by hypoinsulinemia, hyper-
glycemia and hyperlipidemia, whereas type II (insulin-resis-
tant) diabetes mellitus is characterized by initial hyperinsu-
linemia, hyperglycemia, and hyperlipidemia. The elevation of
plasma nonesterified fatty acid levels in diabetes results in the
activation of PPAR�. This activation induces the expression
of PPAR� regulated genes, such as FAT, mCPTI, MCAD,
LCAD, PDK4, MCD, and UCP3.22,25–29 The induction of
fatty acid metabolizing genes, in combination with increased
fatty acid availability, is associated with increased fatty acid
utilization by the heart in diabetes.71 Increased intramitochon-
drial acetyl-CoA levels (due to increased fatty acid and
ketone body utilization), along with induction of PDK4,
severely inhibits pyruvate oxidation. The uncoupling of
glycolysis and pyruvate oxidation leads to an accumulation of
glycolytic intermediates (in the face of hyperglycemia),
resulting in the activation of glucose-sensing transcription
factors and subsequent transcriptional adaptation (eg, induc-
tion of MHC� and skeletal �-actin, with concomitant repres-
sion of MHC� and SERCA2a). It is therefore obvious that
metabolism is not an innocent bystander when it comes to
gene expression in the heart.

Metabolic Maladaptation
How is it possible that the heart is energy-starved in the midst
of excess substrate supply in diabetes? Figure 3 summaries
the hypothetical models of both metabolic adaptation and
metabolic maladaptation. Three major mechanisms of meta-
bolic maladaptation are lipotoxicity, glucotoxicity, and a
combination of the two that we would like to call glucolipo-
toxicity in the heart. Each will be discussed in turn.

Lipotoxicity
In diabetes, the heart is exposed to a hyperglycemic and
hyperlipidemic environment. The heart initially adapts to this
environment by increasing the expression of fatty acid me-
tabolizing proteins, thereby increasing the reliance on fatty
acids as a fuel. This adapted heart is able to maintain cardiac
output under these conditions. It is our hypothesis that
continued exposure of the heart to this metabolic environment
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eventually results in contractile dysfunction. We propose the
following explanation for this sequence of events. As diabetes
progresses, the excessive availability of lipids and fatty acids
(as well as their uptake) may exceed the rate of their use by
the heart, resulting in lipid accumulation within the cardio-
myocyte. We have previously shown that progression of
diabetes is associated with a dramatic decrease in the expres-
sion of PPAR� (and the PPAR� regulated gene, UCP3)
within the rat heart, through an unknown mechanism.28 Thus,
continued exposure to high fatty acid levels, accompanied by
limiting PPAR� activity, will accelerate lipid accumulation.
Lipid accumulation within cells, such as the pancreas and
heart, is associated with a phenomenon termed lipotoxic-
ity.20,101 It has been hypothesized that excessive lipids and
fatty acids, through long chain acyl-CoAs, result in increased
intracellular ceramide levels. The latter can then induce ROS
accumulation, iNOS, and apoptosis.35,102 Contractile dysfunc-
tion of the heart may ensue. There is evidence for this
hypothesis, in the insulin-resistant, ZDF rat. Hearts isolated
from these animals possess increased lipid deposition within
the cardiomyocytes, increased ceramide levels, DNA ladder-
ing indicative of apoptosis, and contractile dysfunction.20

Treatment of rats with the thiazolidinedione, troglitazone,
reduced the hyperlipidemia, decreased intracellular lipid dep-
osition and ceramide levels, reduced the incidence of apopto-
sis, and normalized contractile function.20 Lipotoxicity may
occur independently from ceramide, as recently suggested by
Schaffer and collegues.36 Additional mechanisms by which
lipid deposition may be involved in contractile dysfunction
include chronic activation of PKCs. Indeed, targeted overex-
pression of PKC�2 in the myocardium causes
cardiomyopathy.103

Induction of diabetes in rats with pressure overload-
induced hypertrophy results in rapid cardiac failure.104 This
outcome is similar to the observation that reactivation of
PPAR� in the hypertrophied heart results in contractile
dysfunction.78 With pressure overload, substrate switching by
the hypertrophied heart is essential for maintenance of func-
tion; the hypertrophied heart must utilize glucose as a fuel.
However, the decreased reliance on fatty acids as a substrate
of the hypertrophied heart in the diabetic milieu will accel-
erate lipid deposition within the cardiomyocyte, thereby
accelerating lipotoxicity. A compromise will therefore be set,
balancing the need for glucose metabolism with that of the
utilization of fatty acids to reduce the rate of lipid deposition,
at the expense of contractile function. This may actually be
the case in the ZDF rat heart, which is a pressure overload
(hypertension) induced hypertrophied heart.105 Therefore,
forcing a hypertrophied heart to utilize fatty acids, in the
diabetic milieu will result in a maladapted heart exhibiting
contractile dysfunction.

Glucotoxicity
Just as excessive intracellular lipid accumulation is detrimen-
tal, excessive glucose metabolite accumulation is associated
with various pathologies. Excessive glucose uptake is known
to induce insulin resistance in multiple organs, including
skeletal muscle, liver, and adipose.40 Consistent with glucose
induced insulin resistance, both the hypertrophied and dia-

betic heart possess decreased insulin sensitivity.69,106,107 One
current hypothesis for glucose-induced insulin resistance is
increased flux through the hexosamine biosynthetic pathway,
resulting in increased O-linked glycosylation of specific
proteins involved in insulin signal transduction, such as the
insulin receptor substrates.108

Chronic hyperglycemia is associated with advanced glycation
end-product (AGE)-induced ROS generation.41 Excessive free
radical generation can affect ion channels, Ca2� homeostasis,
mitochondrial function, transcription factor DNA binding activ-
ity, growth, and even initiation of apoptosis.109–112 Many of
these studies have been performed in vascular tissue and await
full investigation in cardiomyocytes.

Glucolipotoxicity
We propose that glucolipotoxicity of the cardiac myocyte is
an extension of lipotoxicity, in which both glucose and fatty
acid availability is high, as seen in the diabetic environment.
As mentioned previously, glucose appears to downregulate
the expression of fatty acid metabolizing genes, through
PPAR� repression, as well as activation of Sp1. If this
glucose-induced inhibition of fatty acid metabolism occurs in
an environment in which fatty acids are in excess, then lipid
deposition within the cardiomyocyte will be accelerated,
resulting in cardiac dysfunction. Such a phenomenon, if
proven, should be termed glucolipotoxicity.113–117

Conclusions
The initial adaptation and subsequent maladaptation of the
heart to a diabetic environment can be traced to a complex
system of metabolic signals. Elevated circulating fatty acids
during diabetes result in activation of PPAR� within the
cardiomyocyte. The subsequent induction of enzymes in-
volved in fatty acid oxidation, in addition to increased fatty
acid availability, result in increased fatty acid oxidation.
Inhibition of pyruvate dehydrogenase (due to the combined
effects of PDK4 induction and fatty acid and ketone body
derived acetyl-CoA) limits pyruvate oxidation. The dissoci-
ation of glycolysis and pyruvate oxidation in the diabetic
heart results in the accumulation of glycolytic intermediates.
We hypothesize that the latter activate glucose sensing
transcription factors as part of the adaptation process. How-
ever, if the diabetes progresses or additional stresses are
placed on the heart (eg, hypertension), metabolic maladapta-
tion will occur. Decreased PPAR� expression (due to pres-
sure overload and/or prolonged exposure to hyperglycemia
and/or hyperlipidemia) will limit the fatty acid oxidation
capacity of the heart. When fatty acid availability exceeds
fatty acid oxidation rates, intramyocardial lipids will accu-
mulate. The subsequent lipotoxicity plays a role in the
development of contractile dysfunction observed in the dia-
betic heart.
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