Local Expression of Interleukin-1 Receptor Antagonist by Plasmid DNA Improves Mortality and Decreases Myocardial Inflammation in Experimental Coxsackieviral Myocarditis

Byung-Kwan Lim, MSc; Seong-Choon Choe, MD, PhD; Jae-Ok Shin, BSc; Seong-Hyun Ho, MSc; Jong-Mook Kim, PhD; Seung-Shin Yu, PhD; Sunyoung Kim, PhD; Eun-Seok Jeon, MD, PhD

Background—The inflammatory cytokines have an important role in the pathogenesis of viral myocarditis. Interleukin-1 (IL-1) is one of the major cytokines that modulate the outcome of viral infection. Among the methods for in vivo gene transfer, direct injection of plasmid DNA is one that is simple and feasible. In this study, we expressed human IL-1 receptor antagonist (hIL-1Ra) in the mouse heart by direct injection of a novel plasmid vector and evaluated its effects on coxsackieviral (CVB3) myocarditis.

Methods and Results—A plasmid vector expressing hIL-1Ra (total 40 μg/mouse) was injected into the heart apex of 8-week-old inbred female Balb/C mice (day 3). On day 0, mice (IL-1Ra-CVB3, n=35) were infected intraperitoneally with 10^4 PFU of CVB3; control mice (pCK-CVB3, n=15) were injected with empty vector on day 3 and infected on day 0. hIL-1Ra was expressed in the heart, reached its peak on day 5, and persisted for 2 weeks. The 14-day survival rate of IL-1Ra-CVB3 was higher (77%) than that of controls (30%, P<0.01). Myocardial virus titers on day 3 were lower in IL-1Ra-CVB3 mice. Myocardial inflammation on day 7 and fibrosis on day 14 were markedly decreased in IL-1Ra-CVB3.

Conclusion—These results showed that direct injection of the expression plasmid vector into the heart was an effective method to transfer the cytokine gene in vivo, and expressed IL-1Ra in the heart can modulate the deleterious effect of the host immune response in viral myocarditis. (Circulation. 2002;105:1278-1281.)

Key Words: myocarditis ■ interleukin ■ gene therapy

Among the etiologic viruses of viral myocarditis, enteroviruses, in particular coxsackievirus B, are the most common.1-4 In the pathogenesis of viral myocarditis, both direct viral injury and the immune response of the host play an important role.5,6 The results from experimental viral myocarditis indicate that the immune response not only plays an important protective role, but also has deleterious effects on the host.6 The balance between these protective and deleterious effects may ultimately determine the course of viral heart disease. Inflammatory cytokine mRNAs were induced and persisted up to 80 days in experimental viral myocarditis, and the levels of interleukin-1β (IL-1) have a correlation with myocardial fibrosis.7

IL-1 receptor antagonist (IL-1Ra) binds to the IL-1 receptor and competitively inhibits the local inflammatory effects of IL-1.8 Infusion of IL-1Ra during the short phase of experimental myocarditis could decrease myocardial inflammation and mortality.9,10 These findings suggest that anticytokine therapy may suppress the deleterious effect of the host immune response. Local expression of IL-1Ra may have more therapeutic effect on viral myocarditis than systemic infusion because of its short half-life in serum.

In the present study, we expressed human IL-1Ra in the mouse heart by direct injection of a novel and highly effective mammalian expression plasmid vector (pCK) and evaluated the effects of overexpressed hIL-1Ra on CVB3 myocarditis.

Plasmid DNA
cDNA encoding hIL-1Ra was cloned by reverse transcription-polymerase chain reaction from total RNA prepared from human peripheral blood lymphocytes. The primer sequences used were 5'-AACGTATGGAATCTGACAGGGCTCCGAGTCAC-3' and 5'-GTCGACCTACTCGTCCTCCTCAGAATTTGCTGT-3'. The amplified cDNA was initially cloned into a pGEM-72f (+) plasmid (Promega). Following sequence confirmation, the hIL-1Ra cDNA was cloned into the mammalian expression vector (pCK), resulting in a pCK-IL-1Ra construct.11 pCK-IL-1Ra plasmid was purified using the EndoFree plasmid Maxi prep kit (Qiagen), diluted to 1 μg/μL in PBS (pH 7.4), and stored at −20°C.

Received December 20, 2001; revision received January 24, 2002; accepted January 24, 2002.

From the Department of Medicine, Cardiovascular Institute, Samsung Medical Center (B.-K.L., J.-O.S., E.-S.J.); Medical Department, MSD Korea Ltd (S.-C.C.); ViroMed Limited, Technology Business Incubator (S.-H.H., J.-M.K., S.-S.Y.); and Institute of Molecular Biology and Genetics (S.K.), Seoul National University, Seoul, South Korea.

Correspondence to Eun-Seok Jeon, MD, PhD, Department of Medicine, Cardiovascular Institute, Samsung Medical Center, 50 Ilwon-dong, Kangnam-ku, Seoul, 135-710, South Korea. E-mail esjeon1107@hanmail.net © 2002 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org DOI: 10.1161/01.CIR.0000012492.06971.88
Intracardiac Injection of Plasmid cDNA
All procedures were reviewed and approved by the Animal Care and
Use Committee at SoonChunHyang University Hospital, Bucheon,
Korea. Eight-week-old inbred female BalbC mice (maintained at
Korean Research Institute of Chemical Technology; original strains
from Harlan, Indianapolis, Ind) were anesthetized by intraperitoneal
injection of a ketamine (100 mg/kg) and xylazine (5 mg/kg) mixture.
After a vertical neck incision and blunt dissection, a tracheostomy
was performed. The mice were mechanically ventilated on an animal
ventilator (CWE Inc) at a tidal volume of 0.5 cm³/stroke and a
respiratory rate of 100 beats/min. Left thoracotomy was performed at
the fifth intercostal space, and the apex of the heart was injected with
40 µg of pCK-IL-1Ra cDNA in 40 µL PBS using an insulin syringe.
Successful injection into the myocardium produced an obvious
blanching in the apex. The skin at the neck and chest was closed.
Mice were extubated when spontaneous movement was observed.
Immediate postoperative mortality was less than 5%, and the primary
result was of pneumothorax. The day of plasmid vector injection was
defined as day –3.

Murine Viral Myocarditis
CVB3 was derived from the infectious cDNA copy of the cardio-
tropic H3 strain of CVB3.12 Both the control group (pCK-CVB3,
n=15) and pCK-IL-1Ra-injected group (IL-1Ra-CVB3, n=35) were
infected on day 0 by intraperitoneal injection with 10⁴ PFU of CVB3.
Mice were euthanized, and the serum and hearts were collected at
days 3, 7, and 14. hIL-1Ra expression improved the 2-week and
4-week survival rates (P<0.01, both). The euthanized mice, at
day 3, 7 and 14, were excluded from the survival study. C,
Changes in heart viral titers (n=5, each). In IL-1Ra-CVB3, the
heart viral titers were significantly lower than in pCK-CVB3
mice at day 3 (P=0.002). In day 7 hearts, the viral titers were
decreased in both groups and showed no differences
(P>0.05).

Organ Virus Titer and Histological Analysis
The base parts of the hearts were homogenized in Dulbecco’s
Modified Eagle’s Medium containing 2% fetal calf serum. After
centrifugation, the viral titers in the supernatant were determined by
the plaque-forming assay.12 The apical parts of the hearts were fixed
in 10% formalin, embedded in paraffin, and stained with
hematoxylin-eosin and Masson’s trichrome. Sections were analyzed
by an investigator who was blinded to the treatment and were graded
‘+’ to ‘++’ for inflammation by 2 histologists using a scale of 0 to 4, in which
a score of 0 represented no myocarditis and 4 represented widespread
and confluent inflammation.

Enzyme-Linked Immunosorbent Assay (ELISA)
for hIL-1Ra Levels
The levels of hIL-1Ra were measured using an ELISA kit (R&D
Systems). Briefly, the apical parts of the hearts were homogenized in
lysis buffer (25 mmol/L Tris-HCl pH 7.4, 50 mmol/L NaCl, 0.5%
Na-deoxycholate, 2% NP-40, 0.2% sodium dodecyl sulfate, and
protease inhibitors). After centrifugation, the supernatants were used
to measure the level of hIL-1Ra (pg/mL) and were normalized to the
amount (mg) of total protein extracted from heart. The sera were
directly used for assays. Serial dilutions of recombinant murine
IL-1Ra were used as a standard.

Statistics
Data are presented as mean±SEM. Survival was analyzed using the
Kaplan-Meier method. The Student’s t test was used for the analysis
of numeric parameters (SPSS 10.0 for Windows, SPSS Inc). Differ-
ences were considered significant at P<0.05.

Results
Time Course of hIL-1Ra Expression
The levels of heart hIL-1Ra on day 3 (2160±1651 pg/mL/mg
of total protein), day 5 (2234±713), day 7 (695±394), day 9
(1062±383), and day 14 (1221±456) were significantly
higher than for controls (24±3). The levels of hIL-1Ra in the
heart peaked on day 5 and lasted for 2 weeks (Figure 1A). In
more than 70% of pCK-IL-1Ra injected hearts with CVB3
infection, hIL-1Ra was expressed at levels at least 3-fold
higher than in control hearts (data not shown). Serum hIL-
1Ra was not significantly elevated.

Survival Rates
In the 10 pCK-IL-1Ra-injected mice without CVB3 infection,
no mice died during the 4 weeks after the operation. The pCK-IL-1Ra-injected mice with CVB3 infection (IL-
1Ra-CVB3, n=35) showed a significantly higher survival
(77%) than did the pCK-CVB3 group (n=15, 30%, 
P<0.01) at day 14. Four weeks after the infection, the
survival rate of IL-1Ra-CVB3 was significantly higher
than in pCK-CVB3 (48% versus 10%, P<0.01; Figure
1B). These data suggest that expressed hIL-1Ra had a
therapeutic effect on the mortality of viral myocarditis.
In viral myocarditis, virus proliferation in myocytes can induce direct cytotoxicity, independent of an immune response, and some coxsackieviral proteins can cause direct myocyte damage. The host immune responses may induce tissue damage by the protective response to remove virus-infected myocytes, or by inappropriate cardiac injury, where the heart is attacked mostly by sensitized T-lymphocytes. This immune response should be specific, attacking only infected cells; however, an imbalance in the immune response may lead to either an overwhelming virus-induced myocardial injury or predominantly immune-mediated tissue damage.

IL-1Ra inhibits many actions of IL-1 by competing for its receptor. The balance between endogenous IL-1 and IL-1Ra in vivo is an important determinant of the host response to infection. In the murine myocarditis model, the increased levels of IL-1β correlated with the myocardial fibrosis, whereas the increased serum levels of IL-1Ra, which was delivered by electroporation with the plasmid vector or continuous IL-1Ra infusion, improved the survival rates and decreased myocardial inflammation and fibrosis. These findings suggest that anticytokine therapy may modulate the deleterious effect of the host immune response in viral myocarditis.

IL-1β has negative inotropic effects and cytotoxicity through excessive NO production by inducible nitric oxide synthase in viral myocarditis. IL-1β may also activate fibroblasts, which affect the remodeling process after myocardial injury. To inhibit the IL-1 response in the cells that express IL-1 receptor, a 10- to 100-fold excess of IL-1Ra is required. In this study, we could overexpress the IL-1Ra in the hearts 100-fold higher than in control hearts by direct injection with a highly effective and novel plasmid vector. The local expression of IL-1Ra suppressed viral replication, myocardial inflammation, and subsequent fibrosis in the heart, and improved the survival rates.

In conclusion, we demonstrated that direct injection of the expression plasmid vector into the heart was an effective method to transfer the cytokine gene in vivo and anticytokine therapy can modulate the deleterious effect of the host immune response in viral myocarditis.

References
Local Expression of Interleukin-1 Receptor Antagonist by Plasmid DNA Improves Mortality and Decreases Myocardial Inflammation in Experimental Coxsackieviral Myocarditis

Byung-Kwan Lim, Seong-Choon Choe, Jae-Ok Shin, Seong-Hyun Ho, Jong-Mook Kim, Seung-Shin Yu, Sunyoung Kim and Eun-Seok Jeon

Circulation. 2002;105:1278-1281

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/105/11/1278

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/