Effect of Cholesterol-Lowering Therapy on Endothelial Function

To the Editor:

In the August 22, 2000, issue of Circulation, Vita et al. found that 6 months of cholesterol-lowering therapy resulted in no significant improvement of coronary endothelial vasomotor function in a study population of patients with coronary artery disease and mildly elevated cholesterol levels. The study was a multicenter, randomized, double-blind, placebo-controlled trial that used simvastatin as the cholesterol-lowering agent. A total of 60 patients completed the invasive protocol, and 1 patient suffered a major complication (acute myocardial infarction).

We recently reported our experience with cholesterol-lowering therapy using pravastatin during a 6-month period and the consequent effect on repeat coronary endothelial function testing in 6 patients with atypical chest pain, normal coronary arteriograms, LDL cholesterol \(\geq 130 \text{ mg/dL} \), and evidence of microvascular endothelial dysfunction during baseline testing (defined as \(\geq 150\% \) increase in coronary blood flow in response to graded infusion of intracoronary acetylcholine). In order to recruit 6 patients who successfully completed the protocol, we screened an additional 8 patients with identical enrollment characteristics, except that in these 8 patients, baseline testing of coronary microvascular endothelial function was normal, excluding them from further participation. To date, we have been unable to identify any other characteristic that seemed to differ importantly among the 6 enrolled and the 8 screened patients.

In our small series, we found significant improvement in LDL cholesterol (157±27 mg/dL to 117±19 mg/dL, \(P=0.02 \)) and corresponding improvement in coronary blood flow in response to acetylcholine (97±32\% versus 160±40\% increase, \(P=0.01 \)) at 6 months. Linear regression analysis showed a significant correlation between change in peak coronary blood flow response and improvement in LDL cholesterol level (\(r=0.87, P=0.02 \)). Improvement in coronary endothelial microvascular function was secondary to reduction in the minimum coronary vascular resistance index (53±12\% to 39±6\%, \(P=0.03 \)). We administered acetylcholine through an infusion catheter into the proximal left main artery (assumed blood flow = 150 mL/min).

We believe that this approach minimizes risk to the patient and permits administration of all graded infusions of acetylcholine in most patients. Because our study population had normal coronary arteriograms, was healthy, and had a specified form and degree of endothelial dysfunction, the group could be characterized as relatively homogeneous with early disease, thus facilitating analyses and avoiding the complexities posed by compensatory mechanisms arising in more advanced disease.

We endorse the conclusion of Vita et al. that the effects of cholesterol-lowering therapy on endothelial function are more complex than previously suspected. Recognizing that this type of research can be tedious, is time and labor intensive, and poses some risk to the patient, and recognizing that the findings ultimately may be of enormous importance, we suggest that simpler protocols and more homogeneous patient groupings may shed some light on this ever-deepening puzzle.

Jan Laws Houghton, MD, FACC
Professor of Medicine
Albany Medical College
Albany, NY 12208

Effect of Cholesterol-Lowering Therapy on Endothelial Function
Jan Laws Houghton

Circulation. 2001;104:e6
doi: 10.1161/01.CIR.104.2.e6
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/104/2/e6

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/