Ionic Remodeling of Cardiac Purkinje Cells by Congestive Heart Failure

Wei Han, MSc; Denis Chartier, BSc; Danshi Li, MD, PhD; Stanley Nattel, MD

Background—Cardiac Purkinje cells (PCs) are important for the generation of triggered arrhythmias, particularly in association with abnormal repolarization. The effects of congestive heart failure (CHF) on the ionic properties of PCs are unknown.

Methods and Results—PCs were isolated from false tendons of control dogs and dogs with ventricular tachypacing-induced CHF. CHF PCs were hypertrophied (capacitance, mean ± SEM, 149 ± 4 pF, n = 130; versus 128 ± 3 pF, n = 150, control; P < 0.001). Transient outward current density was reduced in CHF PCs without change in voltage dependence or kinetics. CHF also reduced inward-rectifier current density, with no change in form of the current-voltage relationship. Densities of L- and T-type calcium, rapid and slow delayed rectifier, and Na\(^{+}\)-Ca\(^{2+}\) exchange currents were unaltered by CHF, but L-type calcium current inactivation was slowed at positive potentials. Purkinje fiber action potentials from CHF dogs showed decreased phase 1 amplitudes and elevated plateau voltages and demonstrated twice as much prolongation on exposure to the rapid delayed rectifier blocker E-4031 as control Purkinje fibers.

Conclusions—CHF causes remodeling of important K\(^+\) and Ca\(^{2+}\) currents in cardiac PCs, decreasing repolarization reserve and causing an exaggerated repolarization delay in response to a class III drug. These results have important potential implications regarding ventricular arrhythmogenesis, particularly related to triggered activity in PCs, in patients with CHF. (Circulation. 2001;104:2095-2100.)

Key Words: ion channels • remodeling • electrophysiology • antiarrhythmia agents • heart failure

Congestive heart failure (CHF) predisposes to the generation of ventricular tachyarrhythmias and the occurrence of sudden death. In addition, CHF promotes drug-induced torsades de Pointes arrhythmias. Abnormal repolarization, related to ion channel remodeling, is important in the arrhythmogenic potential of CHF. CHF-induced remodeling of ionic currents in ventricular and atrial myocytes has been studied in detail. Cardiac Purkinje cells (PCs) are believed to play important roles in the generation of ventricular arrhythmias, particularly those related to triggered activity. Ionic currents are altered in subendocardial PCs in regions of myocardial infarction; however, almost nothing is known about PC ionic remodeling in CHF. The present study was designed to evaluate CHF-induced changes in ionic currents and action potentials (APs) in canine cardiac PCs.

Methods

CHF Preparation

CHF was produced as previously described by pacing the right ventricle at 240 bpm for 3 weeks followed by 2 weeks at 220 bpm. Dogs were then anesthetized with morphine (2 mg/kg SC) and α-chloralose (120 mg/kg IV load, 29.25 mg/kg per hour infusion), and a median sternotomy was performed. All animal care and handling procedures followed the guidelines of the Canadian Council on Animal Care. Excised hearts were immersed in Tyrode solution at room temperature. Free-running false tendons were excised into modified Eagle’s MEM (Gibco-BRL; pH 6.8, HEPES-NaOH) containing collagenase (800 to 900 U/mL, Worthington Type-II) and 1% BSA (Sigma), and single PCs were isolated as previously described.

Solutions

Standard Tyrode solution contained (in mmol/L) NaCl 136, KCl 5.4, MgCl\(_2\) 1, CaCl\(_2\) 1, NaH\(_2\)PO\(_4\) 0.33, HEPES 5, and dextrose 10; pH 7.4 (NaOH). High-K\(^+\) storage solution contained (in mmol/L) KCl 20, KH\(_2\)PO\(_4\) 10, dextrose 10, glutamic acid 70, β-hydroxybutyric acid 10, taurine 10, and EGTA 10; 0.1% BSA; pH 7.4 (KOH). Standard pipette solution contained (in mmol/L) K\(^+\) aspartate 110, KCl 20, MgCl\(_2\) 1, Mg\(_2\)ATP 5, HEPES 10, phosphocreatine 5, GTP 0.1, and EGTA 5; pH 7.2 (KOH). Solutions were equilibrated with 100% O\(_2\).

For K\(^+\) current measurement, the extracellular solution included 1 μmol/L atropine to eliminate muscarinic K\(^+\) currents and CdCl\(_2\) (200 μmol/L) or nimodipine (1 μmol/L, for I\(_{Kr}\) studies) to block Ca\(^{2+}\) currents. Na\(^+\) current contamination was prevented by equimolar substitution of choline for extracellular Na\(^+\). For currents other than transient outward current (I\(_{to}\)), 1 mmol/L 4-AP was used to block I\(_{to}\). Rapid delayed rectifier current (I\(_{Ks}\)) was studied as 5 mmol/L E4031-sensitive current and inward rectifier current (I\(_{Ir}\)) as 1 mmol/L Ba\(^{2+}\)-sensitive current. Slow delayed rectifier current (I\(_{Kr}\))
was studied in the presence of 1 μmol/L dofetilide to eliminate \(I_{K1} \). For \(I_{K1} \) recording, the bath solution contained tetraethylammonium chloride, CsCl, and CsOH in place of NaCl, KCl, and NaOH, respectively, and [CaCl\(_2\)] was 2 mmol/L. The pipette for \(I_{K1} \) recording contained (in mmol/L) CsCl 20, Cs-aspartate 110, MgCl\(_2\) 1, EGTA 5, pH 7.2 (CsOH). Na\(^{+}\)-Ca\(^{2+}\) exchange (Ncx1) current (\(I_{\text{Ncx}} \)) was recorded with ramp pulses and extracellular (in mmol/L, NaCl 140, CaCl\(_2\) 0 or 5, MgCl\(_2\) 1, CsCl 5, HEPES 5, nimodipine 0.001, ouabain 0.01, and ryanodine 0.005; pH 7.2 CsOH) and pipette (in mmol/L, CsCl 90, NaCl 50, MgATP 5, MgCl\(_2\) 3, EGTA 20, CaCl\(_2\) 13, and HEPES 20; pH 7.2, CsOH) solutions designed to suppress \(I_{K1} \) current, Na\(^{+}\)-K\(^{+}\) ATPase, and sarcoplasmic reticulum Ca\(^{2+}\) release.\(^\text{15}\)

Data Acquisition and Analysis

Whole-cell patch clamp was performed as previously described\(^\text{13,14}\) at 36.5°C. Compensated series resistance and capacitive time constant (\(\tau_c \)) averaged 2.5±0.1 MΩ and 290±10 μs. Leakage compensation was not used. The capacitance of CHF cells was increased (149±6.1 pF, \(n=130 \), versus 128±5.1 pF in control, \(n=150 \); \(P<0.001 \)).

Standard microelectrode technique were used to record action potentials (APs). The Tyrode solution contained (in mmol/L) NaCl 120, KCl 1.5, KH\(_2\)PO\(_4\) 1.2, MgSO\(_4\) 0.1, NaHCO\(_3\) 25, CaCl\(_2\) 1.25, and dextrose 5; pH 7.4. Purkinje fiber false tendons were superfused with temperature-oxygenated (95% O\(_2\) and 5% CO\(_2\)) Tyrode solution at 36°C and dextrose 5; pH 7.4. Purkinje fiber false tendons were superfused with temperature-oxygenated (95% O\(_2\) and 5% CO\(_2\)) Tyrode solution at 36°C.

Results

Changes in Ionic Currents

K\(^{+}\) Currents

Figure 1 shows representative \(I_{K1} \) recordings (panels A and B). CHF significantly reduced \(I_{K1} \) (C), including the outward component (D), without altering the form of the \(I_{K1} \) current-voltage relation (Figure 1C, inset).

Figures 2A and 2B illustrate \(I_{K1} \) recordings from control and CHF PCs. \(I_{K1} \) density was significantly smaller in CHF PCs (Figure 2C); however, there were no differences in the form of the \(I_{K1} \) current-voltage relation (Figure 2D). The voltage dependence of \(I_{K1} \) inactivation was tested with a 2-pulse protocol as described in Figure 2E. Activation voltage dependence was evaluated from the relation \(I_{K1}=I_{\text{K1}}(V_{TP}-V_{R}) \), where \(I_{TP} \) and \(\alpha_{K1} \) are current and activation variable at test potential \(V_{TP} \), \(V_{R} \) is reversal potential, and \(G_{\text{max}} \) is maximal conductance. Halfmaximal voltage \((V_{1/2}) \) and activation slope factor (Boltzmann fits) were 8.9±0.7 and 10.3±0.4 mV (control) and 8.9±1.0 and 10.9±1.0 mV (CHF, \(P=NS \)). \(V_{R} \) was obtained from the reversal of \(I_{K1} \) tail currents after 2-ms activating pulses averaged -75.3±2.2 mV. Inactivation \(V_{1/2} \) and slope factor were -30±2 and 11±1 mV (control) and -31±2 and 11±1 mV (CHF, \(P=NS \)). \(I_{K1} \) inactivation kinetics were biexponential, with \(\tau \) unaltered by CHF (Figure 2F). \(I_{K1} \) recovery of the \(I_{K1} \)-V relation (Figure 2D).
(Figure 2G) was biexponential, with \(t \) averaging 42\(\pm \)8 and 1391\(\pm \)76 ms (control) and 52\(\pm \)11 and 1486\(\pm \)108 ms (CHF, \(n \) = 10 for each, \(P \) = NS). \(I_{\text{Kr}} \) frequency dependence was similarly unaffected by CHF (Figure 2H).

Figure 3 shows results for \(I_{\text{Kr}} \) (left) and \(I_{\text{Ks}} \) (right). Representative control recordings are shown at the top, with mean step I-V relations, which were unchanged by CHF, in the middle. Activation voltage dependence based on normalized tail currents is shown in bottom panels and was not altered by CHF for either \(I_{\text{Kr}} \) or \(I_{\text{Ks}} \).

Ca\(^{2+}\) Currents

Representative L-type calcium current (\(I_{\text{Ca,L}} \)) recordings are shown in Figures 4A and 4B and point to slowed \(I_{\text{Ca,L}} \) decay in CHF. \(I_{\text{Ca,L}} \) density was not significantly different between control and CHF cells (Figure 4C). Inactivation \(t \)s were slowed significantly by CHF at voltages positive to +10 mV (Figure 4D). For example, at +20 mV, \(t \)s increased from 6.0\(\pm \)0.3 to 8.2\(\pm \)0.9 ms (\(P < 0.05 \)) and from 38\(\pm \)2 to 66\(\pm \)8 ms (\(P < 0.01 \)) in CHF PCs. In addition to a slowing of inactivation \(t \), CHF significantly increased the proportion of slow-phase inactivation at positive voltages (Figure 4E). For example, at +30 mV, \(t \) accounted for 36\(\pm \)2% of inactivation in control PCs compared with 51\(\pm \)5% in CHF (\(P < 0.05 \)). \(I_{\text{Ca,L}} \) inactivation voltage dependence was assessed with a 2-pulse protocol (Figure 4F). Inactivation \(V_{1/2} \) and slope factor were -25\(\pm \)2 and -6\(\pm \)1 mV (control) and -26\(\pm \)1 and -7\(\pm \)1 mV (CHF, \(n \) = 10 cells/group, \(P = \)NS). Activation voltage dependence was assessed according to the relation \(I_{\text{Vr}} = \beta V_{\text{r}} \) (Figure 4E), with \(V_{\text{r}} \) obtained from a linear fit to the ascending portion of the I-V relation. Resulting mean \(V_{1/2} \) and slope factors were 2.0\(\pm \)1.4 and 6.6\(\pm \)0.2 mV (control) and 0.4\(\pm \)1.4 and 6.5\(\pm \)0.1 mV (CHF, \(n = 10 \) group, \(P = \)NS). Reactivation kinetics at holding potential (HP) (-80 mV) close to the PC resting potential are shown in Figure 4G. Reactivation was monoeXponential, with similar \(t \)s in control (44\(\pm \)7 ms) and CHF PCs (53\(\pm \)6 ms, \(n = 10 \) group, \(P = \)NS). \(I_{\text{Ca,L}} \) showed little frequency dependence between 1 and 5 Hz at a HP of -80 mV, and there were no significant CHF-related differences in \(I_{\text{Ca,L}} \) frequency dependence (Figure 4H).

Figure 3. A, Representative E-4031-sensitive \(I_{\text{Kr}} \) recordings. B, Mean\(\pm \)SEM \(I_{\text{Kr}} \) density voltage relations (\(n = 11 \), control; \(n = 9 \), CHF). C, Mean\(\pm \)SEM normalized \(I_{\text{Kr}} \) tail currents (\(n = 5 \) cells/group) and best-fit Boltzmann relations. D, Representative \(I_{\text{Kr}} \) recordings with 4-second depolarizing pulses (0.1 Hz) and 2-second repolarizations to -40 mV to record tail currents. E, Mean\(\pm \)SEM \(I_{\text{Kr}} \) density voltage relations (\(n = 30 \), control; \(n = 25 \), CHF). F, Normalized \(I_{\text{Kr}} \) tail I-V relations and best-fit Boltzmann relations. CTL indicates control; TP, test potential.

Figure 4. Representative \(I_{\text{Ca,L}} \) recordings obtained with 250-ms pulses (0.1 Hz) in a control (A) and CHF (B) cell. C, Mean\(\pm \)SEM \(I_{\text{Ca,L}} \) density obtained with the protocol shown in panel A (\(n = 26 \) and 24 cells in control and CHF, respectively). D, Mean\(\pm \)SEM \(I_{\text{Ca,L}} \) inactivation time constants (\(n = 12 \) cells, control; \(n = 14 \), CHF) obtained from recordings with the protocol in panel A. E, Mean\(\pm \)SEM percentage of overall inactivation proceeding by the slower time constant at each test potential. *\(P < 0.05 \) and **\(P < 0.01 \) versus control. F, Voltage dependence of \(I_{\text{Ca,L}} \) inactivation (Inact.) and activation (Act.). Steady-state inactivation was assessed with 1-second conditioning pulses followed by a 300-ms test pulse to +10 mV (0.1 Hz). Activation was assessed from data obtained with the protocol shown in panel A, according to the equation in the text. Data are mean\(\pm \)SEM from 10 control and 10 CHF cells; curves are best-fit Boltzmann relations. G, \(I_{\text{Ca,L}} \) reactivation time course, studied with paired 100-ms pulses delivered with varying interpulse intervals at 0.1 Hz. Curves are monoeXponential fits (\(n = 10 \) cells/group). H, \(I_{\text{Ca,L}} \) frequency dependence, determined from the ratio of current during the 15th pulse to current during the first pulse of a train of 100-ms depolarizations from -80 mV to +10 mV at frequencies indicated (\(n = 10 \) cells/group). CTL indicates control; TP, test potential.
Ca.T reactivation

Examples are shown for control (A) and CHF (B) cells. C, Mean±SEM I_{Ca.T} density voltage relation (n=16 cells/group). D, Voltage dependence of inactivation (Inact.) and activation (Act.) of I_{Ca.T}. Steady-state inactivation was assessed with 1-second prepulses from a HP of −90 mV, followed by a 300-ms test pulse to −30 mV (0.1 Hz). Activation was assessed from currents recorded on 250-ms depolarizations, according to the relation \(I_{VR} = a_{VR} \exp(V_{VR} - V_0) \), with \(V_0 \) obtained from a linear fit to the ascending portion of the I-V relation. Data are mean±SEM for 10 cells/group; curves are best-fit Boltzmann relations. E, I_{Ca.T} reactivation time course, studied with paired 100-ms pulses with varying interpulse intervals delivered at 0.1 Hz. Data are mean±SEM (n=10/group); curves are best-fit monoexponential. F, Frequency dependence of I_{Ca.T}, obtained with 15 100-ms pulses from −90 to −30 mV. Current during the 15th pulse was normalized to current during the first pulse (n=10 cells/group). CTL indicates control; TP, ramp potential.

All PCs possessed a relatively large T-type calcium current (I_{Ca.T}) (Figures 5A and B). I_{Ca.T} was obtained as previously described\(^{16,17}\) by digital subtraction of I_{NCX} elicited at HP −50 mV from I_{Ca.L} at a HP of −90 mV. The mean I_{Ca.T} density voltage relation was not altered by CHF (Figure 5C). I_{Ca.T} inactivation \(V_{1/2} \) and slope factors averaged −61±2 and 4.1±0.4 mV (control) and −63±2 and 4.9±0.5 mV (CHF, n=10/group, P=NS) (Figure 5D). Activation \(V_{1/2} \) and slope factors were −32±1 and 10±1 mV (control) and −30±2 and 12±1 mV (CHF), respectively (n=10/group, P=NS). The time course of I_{Ca.T} inactivation was monoexponential, and there were no significant differences between groups; for example, at −20 mV (voltage of maximum I_{Ca.T}), \(\tau \) were 4.5±0.2 ms (control, n=10) versus 4.6±0.3 ms (CHF, n=10, P=NS). I_{Ca.T} reactivation was assessed (Figure 5E) at a test potential (−30 mV) at which no I_{Ca.T} is activated (Figure 4C). I_{Ca.T} reactivation \(\tau \) averaged 51±3 ms (control) versus 49±4 ms (CHF, n=10 cells/group, P=NS). The frequency dependence of I_{Ca.T} (Figure 4F) was greater than that of I_{Ca.L} but did not differ between groups.

Changes in APs

PC AP characteristics were first recorded at a total of 42 sites from 11 control dogs and 37 sites in 8 CHF dogs at 1 Hz. Phase 1 repolarization was less marked in CHF, and the

Figure 5. I_{Ca.T} was obtained by subtracting currents recorded during 250-ms depolarizations (0.1 Hz) from a HP of −50 mV from those with the same depolarization and a HP of −90 mV. Examples are shown for control (A) and CHF (B) cells. C, Mean±SEM I_{Ca.T} density voltage relation (n=16 cells/group). D, Voltage dependence of inactivation (Inact.) and activation (Act.) of I_{Ca.T}. Steady-state inactivation was assessed with 1-second prepulses from a HP of −90 mV, followed by a 300-ms test pulse to −30 mV (0.1 Hz). Activation was assessed from currents recorded on 250-ms depolarizations, according to the relation \(I_{VR} = a_{VR} \exp(V_{VR} - V_0) \), with \(V_0 \) obtained from a linear fit to the ascending portion of the I-V relation. Data are mean±SEM for 10 cells/group; curves are best-fit Boltzmann relations. E, I_{Ca.T} reactivation time course, studied with paired 100-ms pulses with varying interpulse intervals delivered at 0.1 Hz. Data are mean±SEM (n=10/group); curves are best-fit monoexponential. F, Frequency dependence of I_{Ca.T}, obtained with 15 100-ms pulses from −90 to −30 mV. Current during the 15th pulse was normalized to current during the first pulse (n=10 cells/group). CTL indicates control; TP, ramp potential.

Figure 6A shows I_{NCX} as determined from current during ramp depolarizations from −60 to +50 mV in the presence of 5 and 0 mmol/L [Ca\(^{2+}\)]. Reverse-mode I_{NCX} is substantial in the presence of 5 mmol/L Ca\(^{2+}\) and is absent in the presence of 0 mmol/L Ca\(^{2+}\), allowing I_{NCX} to be calculated from the difference between the two current recordings.\(^{15}\) The results in Figure 6B show that I_{NCX} amplitude was larger in CHF cells but that after correction for cell size (capacitance normalization), there were no significant differences.

Figure 6. A, Currents recorded during 164-ms ramps from −60 to +50 mV in the presence of 0 and 5 mmol/L [Ca\(^{2+}\)]. B, Mean±SEM (24 cells/group) I_{NCX} amplitude (left) and density (right). CTL indicates control; RP, ramp potential.

NCX

Figure 7. AP results for control (left) and CHF (right). PURKINJE fiber preparations. A and B, Typical AP recordings. Vertical line to the left of each AP shows phase-1 amplitude. P.V. indicates the point used to measure voltage at the onset of the plateau. C and D, Effects of E-4031 on APs at 1 Hz in control (C) and CHF (D) PCs. E and F, Effects of E-4031 on mean±SEM APD in 20 control (E) and 26 CHF (F) PCs. *P<0.05, **P<0.01, ***P<0.001 for difference between CHF and control PCs under corresponding conditions with respect to frequency and drug. CTL indicates control.
plateau voltage was higher (Figure 7, top). There were no significant differences in resting potential, AP amplitude, or AP duration (APD) between control and CHF cells, but plateau-voltage was significantly more positive and phase 1 amplitude significantly smaller in CHF PCs (Table).

To evaluate the possibility that the response to an I_{Kr}-blocking class III drug may be altered in CHF PCs, APs were recorded from control and CHF PCs in free-running false tendons with standard microelectrodes before and after exposure to E-4031 (1 μmol/L). The results are illustrated in Figures 7C and 7D, and mean data are provided in Figures 7E and 7F. As in the first series of experiments, predrug APDs were not significantly different between control and CHF PCs. However, E-4031 had substantially larger effects on APD in CHF PCs, so that APD$_{50}$ after the drug was significantly greater in CHF cells at all frequencies ($P<0.001$ for each). For example, E-4031-induced APD$_{50}$ increases averaged $103±45$ ms (25±10%) at 1 Hz in control preparations compared with $231±40$ ms (54±10%) in CHF preparations.

Comparison with Previous Studies of CHF-Induced Ionic Remodeling

There have been extensive studies of the ionic remodeling of K$^+$ and Ca$^{2+}$ channels in ventricular myocytes of patients and experimental animals with CHF. 5,18,19 I_{Ca-L} is quite consistently reduced5,20–22 by an average of ~35% in ventricular myocytes of patients with CHF. 18 I_{Kr}, also tends to be decreased by ~25%.18 Although there is some variability in the results for I_{Ca-L}, overall there seems to be no change in I_{Ca-L} density or kinetics. Recent studies point to downregulation of I_{Kr} and possibly I_{Ca-L} in ventricular myocytes of rabbits with tachypacing-induced CHF.24 Atrial ionic remodeling in CHF has been studied to a lesser extent, but recent studies suggest that I_{Na}, I_{Kr}, and I_{Ca-L} are all decreased and I_{NCX} is increased, with no change in kinetics or voltage dependence and no change in I_{K1} or I_{Kr}. 6

Several aspects of PC ionic remodeling resemble previously reported findings in ventricular myocytes: I_{Ca} and I_{K1} were reduced and I_{Ca-L} density was unchanged. These observations suggest that the mechanisms leading to CHF-induced I_{Ca} and I_{K1} downregulation at the ventricular level also likely operate on free-running Purkinje fiber false tendons. The CHF-induced slowing of I_{Ca} inactivation that we observed has, to our knowledge, been reported in ventricular myocytes. We did not observe changes in I_{Na} or I_{K1}, suggesting that PCs may be spared from the I_{Ca} downregulation occurring with CHF in ventricular myocytes24 and possibly explaining why overall APD was not prolonged in CHF PCs. Unlike typical findings in ventricular6 and atrial6 myocytes, I_{NCX} density was not increased by CHF in PCs.

Relationship to Other Studies in PCs

I_{Ca}, I_{NCX}, and I_{K1}, and E-4031–sensitive current have been studied in PCs from the subendocardial Purkinje fiber network overlying 24- to 48-hour-old myocardial infarctions.10–12 I_{in} density was reduced by >50% in the infarct zone, with no change in voltage dependence but a slowing in reactivation.10 PCs from free-running false tendons had normal I_{in} properties. Both I_{Ca-L} and I_{Ca-T} were reduced in subendocardial PCs from the infarct zone, with no changes in voltage dependence or inactivation kinetics.11 I_{K1} was reduced in PCs from the infarct zone, and a very rapidly activating E-4031–sensitive current was increased, with no classical I_{Kr} noted in either normal or infarct zone PCs.12 In general, the abnormalities noted in infarct zone PCs were more severe than those we observed. There are, however, some qualitative similarities in terms of decreases in I_{Kr} in CHF. In contrast to our findings, myocardial infarction did not affect the electrophysiology in PCs from free-running false tendons, suggesting that myocardial infarction produces severe but localized ionic remodeling in infarct zone PCs whereas CHF produces more generalized but less severe remodeling.

Potential Significance

The present study constitutes the first detailed analysis of CHF-induced ionic remodeling in PCs. PCs are believed to play an important role in ventricular arrhythmogenesis, particularly in the generation of early afterdepolarization–induced arrhythmias.7,8 The CHF-induced ionic abnormalities we noted in PCs may contribute to promoting the occurrence of arrhythmogenic afterdepolarizations in patients with CHF, particularly in response to interventions such as I_{Kr}-blocking antiarrhythmic drugs and hypokalemia that prolong APD. Downregulation of I_{Na}, along with slowed inactivation of I_{Ca}, is likely responsible for the positive shift in the plateau voltage of PCs. The positive shift in plateau voltage and slowed I_{Ca-L} inactivation at positive voltages would act to promote the occurrence of I_{Ca-L}-dependent early afterdepolarizations under conditions that delay repolarization.25

The CHF-induced decreases in I_{Ca} and I_{K1} are likely to reduce the repolarization reserve, the ability of myocardial cells to repolarize when normal repolarizing currents are reduced by drugs, metabolic or electrolyte imbalances, or
intercurrent diseases. Consistent with this notion, PCs from dogs with CHF showed twice as great APD prolongation in response to I_{Kr} blockade with E-4031 compared with control PCs. CHF significantly increases the risk of drug-induced Torsades de Pointes arrhythmias. The CHF-induced ionic remodeling that we observed in PCs could clearly play an important role in this clinically important phenomenon.

Potential Limitations

The isolation of PCs from free-running Purkinje fibers is technically challenging, requiring prolonged periods of bath exposure to cell-dissociating enzymes (chunk method). This likely explains the absence of studies of PC remodeling in CHF, despite the large number of studies that have evaluated ventricular myocyte remodeling. I_K is particularly sensitive to isolation technique and has been difficult to record in isolated PCs. We were able to record robust I_{Kr} in isolated PCs, but I_{Kr} was smaller and more difficult to record; therefore, our results regarding I_{Kr} should be interpreted with caution. The properties of the currents we recorded from normal PCs were generally similar to those reported for canine cardiac Purkinje myocytes surviving in the 24 and 48 hr infarcted heart. Circulation. 1995;92:465–473.

Acknowledgments

This work was supported by operating grants from the Canadian Institutes for Health Research and the Quebec Heart and Stroke Foundation. Dr Li was a Heart and Stroke Corporation of Canada/Institutes for Health Research and the Quebec Heart and Stroke Foundation. The authors thank Essai and Pfizer Pharmaceuticals for providing E-4031 and doxifludil, Chantal St-Cyr and Chantal Maltais for technical assistance, and Annie Laprade for secretarial help.

References

Ionic Remodeling of Cardiac Purkinje Cells by Congestive Heart Failure
Wei Han, Denis Chartier, Danshi Li and Stanley Nattel

Circulation. 2001;104:2095-2100
doi: 10.1161/hc4201.097134

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/104/17/2095

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/