Microvascular Obstruction After Nonsurgical Septal Reduction for the Treatment of Hypertrophic Cardiomyopathy

Katherine C. Wu, MD; Alan W. Heldman, MD; Jeffrey A. Brinker, MD; Joshua M. Hare, MD; João A.C. Lima, MD

A 47-year-old woman with hypertrophic obstructive cardiomyopathy presented with worsening exertional dyspnea, paroxysmal nocturnal dyspnea, and chest pain, despite maximal medical therapy. Echocardiography showed severe ventricular hypertrophy, left ventricular outflow tract (LVOT) narrowing, a 110 mm Hg LVOT gradient, and systolic anterior motion of the mitral valve. She was referred for nonsurgical septal reduction (NSSR). Coronary angiography revealed 3 proximal septal branches of the left anterior descending artery; each was injected with ethanol through an occlusive balloon catheter. Final angiography showed low flow and incomplete contrast penetration into the treated septal branches. The patient’s LVOT gradient declined to 65 mm Hg, and she improved symptomatically. Contrast-enhanced MRI was performed at 3 time points (Figure).

MRI has been used to characterize myocardial perfusion after acute myocardial infarction (MI) due to coronary artery disease (CAD). An area of subendocardial hypoenhancement or perfusion defect is often seen on first-pass imaging, and this usually corresponds to microvascular obstruction. On delayed imaging, this subendocardial region becomes hyperenhanced along with the surrounding infarcted territory. NSSR with ethanol creates a localized infarct. Ethanol causes significant microvascular obstruction such that contrast penetration is extremely slow. Hence, the delayed image obtained shortly after the procedure shows patchy hyperenhancement. With time, the extent of microvascular obstruction declines, as seen after acute MI due to CAD. Thus, the images taken 3 weeks after the procedure show a less severe first-pass perfusion defect and greater hyperenhancement on delayed imaging. In the setting of acute MI due to CAD, microvascular obstruction affects left ventricular remodeling. How this influences the long-term outcome of hypertrophic obstructive cardiomyopathy patients who have had NSSR remains unknown.

Contrast-enhanced MRI using fast gradient echo sequences was performed before the procedure and at 2 days and 3 weeks after the procedure. First-pass images were acquired within 20 seconds of contrast injection, while delayed images were acquired 30 minutes after contrast bolus. Baseline short (A) and long-axis (B) images show homogeneous myocardial signal intensity in the base to the midventricle. Two days after septal reduction, the first-pass short-axis image (C) shows a transmural perfusion defect (ie, lack of contrast uptake or hypoenhancement) in the proximal septal region (arrowheads). The delayed, long-axis image (D) shows continued poor contrast penetration into the septal region, with patchy hyperenhancement (arrowheads). Three weeks after treatment, the first-pass image (E) shows a smaller septal perfusion defect (arrowheads). The corresponding delayed long-axis image (F) shows greater contrast penetration than at day 2 (arrowheads).

From the Department of Medicine and Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Md.

Correspondence to Dr Katherine C. Wu, The Johns Hopkins Hospital, Division of Cardiology, Carnegie 568, 600 North Wolfe Street, Baltimore, MD 21287-6568. E-mail kwa@jhmi.edu

The editor of Images in Cardiovascular Medicine is Hugh A. McAllister, Jr, MD, Chief, Department of Pathology, St Luke’s Episcopal Hospital and Texas Heart Institute, and Clinical Professor of Pathology, University of Texas Medical School and Baylor College of Medicine.

Circulation encourages readers to submit cardiovascular images to the Circulation Editorial Office, St Luke’s Episcopal Hospital/Texas Heart Institute, 6720 Bertner Ave, MCI-267, Houston, TX 77030. (Circulation. 2001;104:1868.)

© 2001 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org

1868
Microvascular Obstruction After Nonsurgical Septal Reduction for the Treatment of Hypertrophic Cardiomyopathy
Katherine C. Wu, Alan W. Heldman, Jeffrey A. Brinker, Joshua M. Hare and João A.C. Lima

Circulation. 2001;104:1868
doi: 10.1161/hc4001.096355

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/104/15/1868

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/