c-Jun Decreases Voltage-Gated K⁺ Channel Activity in Pulmonary Artery Smooth Muscle Cells

Ying Yu, MD, PhD*; Oleksandr Platoshyn, MS*; Jifeng Zhang, PhD*; Stefanie Krick, MD; Ying Zhao, BS; Lewis J. Rubin, MD; Abraham Rothman, MD; Jason X.-J. Yuan, MD, PhD

Background—Activity of voltage-gated K⁺ (Kᵥ) channels controls membrane potential (Eₘ) that regulates cytosolic free Ca²⁺ concentration ([Ca²⁺]ₖᵢтен) by regulating voltage-dependent Ca²⁺ channel function. A rise in [Ca²⁺]ₖᵢтен in pulmonary artery smooth muscle cells (PASMCs) triggers vasoconstriction and stimulates PASMC proliferation. Whether c-Jun, a transcription factor that stimulates cell proliferation, affects Kᵥ channel activity in PASMCs was investigated.

Methods and Results—Infection of primary cultured PASMCs with an adenoviral vector expressing c-jun increased the protein level of c-Jun and reduced Kᵥ currents (I_Kᵥ) compared with control cells (infected with an empty adenovirus). Using single-cell reverse transcription–polymerase chain reaction, we observed that the mRNA level of Kv1.5 and the current density of I_Kᵥ were both attenuated in c-jun-infected PASMCs compared with control cells and cells infected with antisense c-jun. Overexpression of c-Jun also upregulated protein expression of Kvβ₂ and accelerated I_Kᵥ inactivation. Furthermore, Eₘ was more depolarized and [³H]thymidine incorporation was greater in PASMCs infected with c-jun than in control cells and cells infected with antisense c-jun.

Conclusions—These results suggest that c-Jun–mediated PASMC proliferation is associated with a decrease in I_Kᵥ. The resultant membrane depolarization increases [Ca²⁺]ₖᵢтен and enhances PASMC growth. (Circulation. 2001;104:1557-1563.)

Key Words: transcription factors ■ ion channels ■ genes ■ lung ■ remodeling

Pulmonary vascular remodeling due to proliferation and hypertrophy of pulmonary artery smooth muscle cells (PASMCs) is an important pathological feature in pulmonary hypertension.¹⁻² A rise in cytosolic free Ca²⁺ concentration ([Ca²⁺]ₖᵢтен) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC growth.³⁻⁵ [Ca²⁺]ₖᵢтен is increased primarily by Ca²⁺ release from intracellular Ca²⁺ stores and Ca²⁺ influx through Ca²⁺ channels in the plasma membrane.⁶⁻⁸ Among various Ca²⁺-permeable channels, the voltage-dependent Ca²⁺ channels (VDCCs) that are opened by membrane depolarization are a major Ca²⁺ entry pathway in vascular smooth muscle cells.⁹⁻¹⁰

Membrane potential (Eₘᵢ₀) is controlled primarily by the activity of Na⁺,K⁺-ATPase and the permeability of K⁺ ions across the plasma membrane through K⁺ channels. When K⁺ channels close or K⁺ channel expression is downregulated, whole-cell K⁺ currents decline and Eₘᵢ₀ becomes less negative.¹¹ The membrane depolarization opens VDCCs, promotes Ca²⁺ influx, increases [Ca²⁺]ₖᵢтен,¹²⁻¹⁵ and stimulates PASMC growth.¹²,¹³ Membrane depolarization may also promote Ca²⁺ entry via the reverse mode of Na⁺/Ca²⁺ exchange, which is sufficient to trigger Ca²⁺ release from ryanodine-sensitive Ca²⁺ stores, and increase [Ca²⁺]ₖᵢтен.¹⁴ In vascular smooth muscle cells, voltage-gated K⁺ (Kᵥ) channels play an important role in the regulation of resting Eₘᵢ₀.¹⁰⁻¹³ Blockade of Kᵥ channels causes membrane depolarization, opens VDCCs, induces Ca²⁺-dependent action potentials, and increases [Ca²⁺]ₖᵢтен in PASMCs.¹⁰⁻¹³

c-jun is an immediate-early gene whose mRNA expression increases rapidly and transiently when quiescent cells are stimulated to grow.¹⁵ c-Jun is a nuclear protein that serves as a nuclear intermediate of signal transduction in cellular growth and differentiation.¹⁶ How c-Jun mediates PASMC growth is unclear. This study was designed to test the hypothesis that c-Jun induces PASMC proliferation and hypertrophy partially by regulating expression and function of Kᵥ channels. The subsequent decrease in whole-cell Kᵥ currents (I_Kᵥ) induces membrane depolarization, increases [Ca²⁺]ₖᵢтен, and stimulates PASMC proliferation.

Methods

Cell Preparation

Primary cultured PASMCs were prepared from Sprague-Dawley rats as previously described.⁶,¹₀,¹² Briefly, adventitia and endothelium were carefully removed from the isolated pulmonary arterial branches (third to fourth division). The smooth muscle was digested...
Oligonucleotide Sequences of the Primers Used for Single-Cell RT-PCR

<table>
<thead>
<tr>
<th>Standard Names</th>
<th>Sequence/Location</th>
<th>nt</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-Jun (X17215)</td>
<td>5'-AGCCAACAAAGTGTGCACAA-3'</td>
<td>2029–2049</td>
</tr>
<tr>
<td></td>
<td>5'-AGGTCAAGTCTGCTGTCG-3'</td>
<td>2359–2379</td>
</tr>
<tr>
<td>Nested primers (262 bp)</td>
<td>5'-CCAAACAAAGTGTGCACAA-3'</td>
<td>2031–2050</td>
</tr>
<tr>
<td></td>
<td>5'-CATCTGCTGAGAGTGCTGT-3'</td>
<td>2272–2292</td>
</tr>
<tr>
<td>Kv1.5 (M27158)</td>
<td>5'-ACTCTGCAGAGGACAGACAT-3'</td>
<td>2085–2106</td>
</tr>
<tr>
<td></td>
<td>5'-GGTGGCTGGTTCTCTGAGAC-3'</td>
<td>2330–2351</td>
</tr>
<tr>
<td>Nested primers (196 bp)</td>
<td>5'-TCCTGAGAGGACAGACATCG-3'</td>
<td>2088–2108</td>
</tr>
<tr>
<td></td>
<td>5'-AAGTGGAGAGAGAGGGG-3'</td>
<td>2263–2283</td>
</tr>
<tr>
<td>β-Actin (VO2117)</td>
<td>5'-GTGATCTACTATCAGGAC-3'</td>
<td>2528–2549</td>
</tr>
<tr>
<td></td>
<td>5'-CTCAGTACAGTCGCTGAGAA-3'</td>
<td>3129–3150</td>
</tr>
<tr>
<td>Nested primers (244 bp)</td>
<td>5'-AGTTGACGTGAGATCGCT-3'</td>
<td>2733–2752</td>
</tr>
<tr>
<td></td>
<td>5'-GACTCATCTACCTGCTCT-3'</td>
<td>3081–3100</td>
</tr>
</tbody>
</table>

*The accession numbers in GenBank for the sequences used in designing the primers.

with collagenase and elastase. The cells were plated onto coverslips or in flasks and cultured in 10% FBS-DMEM in a 37°C, 5% CO₂, humidified incubator.

Generation of Repombinant Adenoviral Vector and c-Jun Infection Protocol

E1 region–deleted recombinant adenoviral vectors carrying either sense (+ c-Jun) or antisense (− c-Jun) cDNA were constructed. A 2.6-kb-pair fragment of full-length c-Jun cDNA was then subcloned in sense or antisense orientation into the pACCMVpLpa shuttle vector to yield the sense and antisense constructs, pSR−sense-c-Jun and pSR−antisense-c-Jun. Both pSR−sense-c-Jun and pSR−antisense-c-Jun were then independently co-transfected with pJM17 into HEK-293 cells by calcium phosphate/DNA coprecipitation. For viral plaque assays, the cotransfected HEK-293 cells were overlaid with 0.65% agarose (prepared with 1% milk powder), the membranes were incubated with rabbit anti–c-Jun and anti-Kv β polyclonal antibodies (Biosource). The membranes were then washed and incubated with anti-mouse horseradish peroxidase–conjugated IgG for 90 minutes at 24°C. The bound antibody was detected with an enhanced chemiluminescence detection system (Amersham).

Single-Cell RT-PCR

Multiplex single-cell reverse transcription (RT)-PCR was performed to determine the mRNA expression of c-Jun and Kv1.5 at the single-cell level. After I_{V(K)} had been recorded, the cell was carefully aspirated into a collection pipette that contained 12 µL of the pipette solution supplemented with 10 µM TTH polymerase. The content in the pipette was then expelled immediately into a 0.2-mL PCR tube that contained 8 µL of the solution composed of (mmol/L) Tris-HCl 10, KC1 50, MgCl₂ 2.5, diethiothreitol 0.1, oligo(dT) 1.25, and dNTPs 0.5, and 5 U AMV reverse transcriptaseXL. RT was performed for 60 minutes at 42°C. Then, first-round PCR with 45 cycles was performed in the same tube by the addition of 80 µL of the premixed PCR buffer containing 10 mmol/L Tris-Cl 50, 2.5 mmol/L MgcL₂ 20 mmol/L each of sense and antisense primers (first primers) for all the genes of interest, and 5 U Taq polymerase (RNA PCR kit, Takara). Two-microliter aliquots of the first-round PCR products were reamplified by the second-round PCR with 25 to 30 cycles, which was carried out separately with fully nested gene-specific primers (nested primers) for each target gene. The second-round PCR amplification products were separated on 1.5% agarose gel and visualized with GelStar gel staining. The cell-free samples were also used in PCR as a negative control. To semiquantify the PCR products, an invariant mRNA of β-actin was used as an internal control. The sense and antisense primers were specifically designed from the coding regions of rat c-Jun (X17215) and Kv1.5 (M27158) (Table).

Determination of DNA Synthesis

DNA synthesis was evaluated by [³H]thymidine incorporation. Cells were first cultured in serum-free DMEM for 24 hours and then infected with the adenoviral vector carrying + c-Jun or − c-Jun for 3 hours in 0.2% FBS-DMEM. [³H]thymidine (1 µCi/well) was added after 48 hours, and the incorporated radioactivity was determined by a liquid scintillation counter 12 hours later. The results are repre-
sented as mean counts per minute from 9 to 12 experiments. For 4-AP experiments, the cells were incubated for 20 minutes, 3 times intermittently during a period of 24 hours, in 0.2% FBS-DMEM containing 1.25 mmol/L 4-AP before [3 H]thymidine was added.

Statistical Analysis
The composite data are expressed as mean±SEM. Statistical analyses were performed by use of unpaired Student’s t test or 1-way ANOVA and Fisher’s protected least significant difference (PLSD) tests where appropriate. Differences were considered to be significant at a value of *P*<0.05.

Results

Overexpression of c-Jun Decreases *I*_{K(V)} in PASMCs

The protein level of c-Jun was significantly higher in rat PASMCs infected with the adenovirus expressing +c-jun than in cells infected with control adenovirus that does not carry the c-jun gene (Cont) and cells infected with +c-jun or A-c-jun (Figure 1A). Overexpression of c-Jun was associated with a significant decrease in amplitude of *I*_{K(V)} (Figure 1B). The averaged current amplitudes at +40 mV were 25±4 pA in control cells and 12±2 pA (*P*<0.01) in the c-jun-infected cells (Figure 1C). Infection of c-jun negligibly affected membrane capacitance (*C_m*) (Figure 2A) but markedly reduced current density (Figure 2C) of *I*_{K(V)}

The relationships of current-density and voltage show that overexpression of c-Jun decreased the current-density of *I*_{K(V)} by ≈62% at +80 mV (from 56.6±7.3 to 21.3±1.8 pA/pF) (Figure 2C, inset).

mRNA Level of c-Jun Is Inversely Proportional to the Amplitude of *I*_{K(V)} in Single PASMCs

The level of c-Jun mRNA was much higher (a) and the amplitude of whole-cell *I*_{K(V)} (b and c) was markedly lower in a c-jun-infected cell than in a control cell (Figure 3A). Furthermore, the level of c-Jun mRNA was much lower and the amplitude of *I*_{K(V)} was much higher in a cell infected with antisense c-jun than in a cell infected with c-jun (Figure 3B). The same results were reproduced in 5 pairs of control and c-jun-infected cells.

Overexpression of c-Jun Downregulates the mRNA Expression of the K_v Channel α-Subunit

After recording of *I*_{K(V)}, the PASMC was collected to determine mRNA expression of Kv1.5 by RT-PCR. As shown in Figure 4, the Kv1.5 mRNA level in a cell infected with c-jun was much lower than in a control cell, whereas the β-actin mRNA level was similar (Figure 4A). Furthermore, in the c-jun–infected cell, the decreased mRNA expression of...
Kv1.5 correlated with the diminished amplitude of whole-cell\(I(V)\) (Figure 4B). The same results were reproduced in 5 pairs of the cells. These results suggest that c-Jun may decrease \(I(V)\) by affecting both the function and expression of Kv channels in PASMCs.

Overexpression of c-Jun Stimulates Kv\(\beta_2\) Protein Expression and Accelerates \(I(V)\) Inactivation

The Kv channel \(\beta\)-subunit is a regulatory subunit that confers inactivation on the Kv channel \(\alpha\)-subunits (eg, Kv1.5) and blocks Kv channels as an open-channel blocker.\(^{19-21}\) Therefore, an increase in \(\beta\)-subunit expression should decrease \(I(V)\).

In cells infected with \(c-jun\), the current inactivation was accelerated, whereas the current activation appeared to be unaffected, compared with control cells. The time constants for the current inactivation (\(\tau_{inact}\)) at +80 mV were 247±34 and 125±36 ms (\(P<0.01\)) in controls and \(c-jun\)-infected cells, respectively (Figure 5A to 5C). Furthermore, the protein level of Kv\(\beta_2\) was significantly greater in the \(c-jun\)-infected cells than in control cells (Figure 5D), suggesting that c-Jun upregulates protein expression of the Kv channel \(\beta\)-subunit.

Overexpression of c-Jun and Blockade of Kv Channels Cause Membrane Depolarization and Stimulate PASMC Proliferation

To test the effects of c-Jun on resting \(E_m\) and cell proliferation, we compared \(E_m\) and thymidine incorporation in...
PASMCs infected with an empty adenovirus (Cont) and with adenoviral vectors carrying +c-jun and A-c-jun. As shown in Figure 6, [3H]thymidine incorporation was markedly increased (similar results were reproduced 3 times in cells isolated from 3 rats), and resting Em was much depolarized in cells infected with +c-jun, compared with control cells and cells infected with A-c-jun. Furthermore, pharmacological blockade of K_v channels with 4-AP (1.25 mmol/L) caused E_m depolarization and significantly increased [3H]thymidine incorporation in control cells (similar results were reproduced 3 times in cells isolated from 3 rats). These results suggest that the c-Jun–induced decrease in I_{K(V)} stimulates DNA synthesis in PASMCs by causing membrane depolarization and increase in [Ca^{2+}]_{cyt}.

Discussion

Subsequent to the activation of immediate-early genes (eg, c-jun), the cellular signaling pathways that cause proliferation and hypertrophy of PASMCs are not well understood. In primary cultured rat PASMCs, we observed that overexpression of c-Jun reduced I_{K(V)} by downregulating Kv1.5 expression and upregulating Kvβ2 expression and induced membrane depolarization. It has been shown that in PASMCs, opening of VDCCs by membrane depolarization causes increased [Ca^{2+}]_{cyt} and induces cell contraction and proliferation. In this study, the c-Jun–mediated decreases in I_{K(V)} and membrane depolarization were also associated with an increase in PASMC proliferation. These observations suggest that c-Jun–mediated PASMC growth may result from the regulation of K_v channel expression and function, the activity of K_v channels serving as an effector to prompt cell proliferation by modulating E_m and [Ca^{2+}]_{cyt}.

An increase in c-Jun mRNA level was associated with thrombin-induced hypertrophy and PDGF-mediated proliferation of rat PASMCs. c-Jun is a transcription activator that

Figure 5. c-Jun accelerates I_{K(V)} inactivation and upregulates Kvβ2 expression. A, Currents (at +80 mV) averaged from 53 control cells (Cont) and 63 cells infected with (+c-jun). Normalized average currents (at +80 mV) showing current inactivation (B) and summarized data (mean±SEM) showing time constants (C) for current activation (τ_{act}) and inactivation (τ_{inact}) in control cells and cells infected with +c-jun. D, Western blot analysis of Kvβ2 protein and summarized data (mean±SEM) showing protein levels of Kvβ2 (normalized to level of α-actin) in control and c-jun–infected cells. **P<0.01 vs Cont.

Figure 6. Effects of c-Jun and 4-AP on E_m and PASMC proliferation. A, Summarized data (mean±SEM) showing [3H]thymidine incorporation (n=6 cell samples for each group) and resting E_m (n=16 cells from 6 rats) in control cells (Cont) and cells infected with +c-jun or A-c-jun. B, Summarized data (mean±SEM) showing [3H]thymidine incorporation (n=12 cell samples for each group) and resting E_m (n=20 cells from 3 rats) in control cells treated with 4-AP (4-AP) or without (Cont) 4-AP (1.25 mmol/L). ***P<0.001 vs Cont.
upregulates responsive genes associated with proliferation, differentiation, and apoptosis.16,23 c-Jun may indirectly regulate transcription of Kv1.5 gene by activating expression of an intermediate gene product that can subsequently down-regulate K\textsubscript{a} channel expression and decrease I\textsubscript{K(V)\textsubscript{a}}. The augmenting effect of c-Jun on Kv\textsubscript{a} expression implies that c-Jun modulates K\textsubscript{a} channel \(\alpha\)- and \(\beta\)-subunit gene expression by different mechanisms.

Native K\textsubscript{a} channels are homomeric or heteromeric tetramers that are composed of 2 structurally distinct subunits: the pore-forming \(\alpha\)-subunits and the regulatory \(\beta\)-subunits. Kv1.5 is a delayed rectifier K\textsubscript{a} channel \(\alpha\)-subunit that has been described in PASMCs from animals and humans.24 The homomeric Kv1.5 channels, which are activated at potentials ranging from \(-30\) to \(-60\) mV, appear to be responsible for regulating resting E\textsubscript{m}, whereas the heteromeric Kv1.5/Kv1.2 channels are involved in mediating membrane depolarization during hypoxia in PASMCs.25 The K\textsubscript{a} channel \(\beta\)-subunit has been demonstrated to block the K\textsubscript{a} channel \(\alpha\)-subunits as an open-channel blocker,21 confer fast inactivation on delayed rectifier K\textsubscript{a} channel \(\alpha\)-subunits,19,20 and confer oxygen and redox sensitivity on K\textsubscript{a} channel \(\alpha\)-subunits.20,25 Therefore, the c-Jun-mediated decrease in I\textsubscript{K(V)} expression and increase in Kv\textsubscript{b}\textsubscript{2} expression would reduce the number of homomeric Kv1.5 channels and increase the number of heteromeric Kv1.5/Kv1.2 channels, thus decreasing the amplitude and current density of I\textsubscript{K(V)}.

E\textsubscript{m} in PASMCs is regulated primarily by K\textsuperscript{+} permeability, which is determined by sarcosomal K\textsuperscript{+} channel activity.11 Under resting conditions, K\textsuperscript{+} permeability through K\textsubscript{a} channels is partially responsible for determining E\textsubscript{m} in smooth muscle cells.10–13 Thus, E\textsubscript{m} is directly related to the whole-cell I\textsubscript{K(V)}: PASMCs have a very large membrane input resistance (1 to 10 G\textsubscript{\Omega})11; therefore, a modest change in I\textsubscript{K(V)} would cause a large change in E\textsubscript{m}. Indeed, overexpression of c-Jun reduced I\textsubscript{K(V)} by 50% to 70% (at \(-40\) and \(+80\) mV) and caused a 15-mV depolarization. These results indicate that the c-Jun–mediated decrease in I\textsubscript{K(V)} is sufficient to cause substantial membrane depolarization in PASMCs.

Studies on the kinetics of L-type VDCCs and its relationship with [Ca\textsuperscript{2+}]\textsubscript{cyt} have demonstrated that prolonged membrane depolarization at a range of \(-35\) to \(-20\) mV (a voltage range at which the Ca\textsuperscript{2+} channel inactivation is incomplete while the channel activation begins) can open Ca\textsuperscript{2+} channels sufficiently to cause a sustained increase in [Ca\textsuperscript{2+}]\textsubscript{cyt}.15 Because of the minimal resistance of the nuclear membrane to Ca\textsuperscript{2+} ions,26 the sustained elevation of [Ca\textsuperscript{2+}]\textsubscript{cyt} would rapidly increase nuclear [Ca\textsuperscript{2+}]. Furthermore, a very small increase in [Ca\textsuperscript{2+}]\textsubscript{cyt} would also result in a large increase in [Ca\textsuperscript{2+}]\textsubscript{cyt} in the sarcoplasmic reticulum, a cytoplasmic organelle involved in protein processing and lipid synthesis.6 In the cell cycle, Ca\textsuperscript{2+} is necessary for transitions from the resting state (G\textsubscript{0}) to DNA synthesis and mitosis.4 Thus, increases in cytosolic, nuclear, and sarcoplasmic reticulum [Ca\textsuperscript{2+}] all may contribute to stimulate PASMCs.

It has been demonstrated that an increase in [Ca\textsuperscript{2+}]\textsubscript{cyt} due to Ca\textsuperscript{2+} influx through VDCCs spatially stimulates transcription of c\texttextit{-fos}/c\texttextit{-jun} by activation of cAMP response element binding protein in the cytosol and nucleus.27,28 Overexpression of c-Jun decreased I\textsubscript{K(V)} and depolarized PASMCs. The resultant increase in [Ca\textsuperscript{2+}]\textsubscript{cyt} due to opening of VDCCs should further stimulate c\texttextit{-fos}/c\texttextit{-jun} transcription. Therefore, this may serve as a positive-feedback mechanism in regulating Ca\textsuperscript{2+}-sensitive genes, which are required for cell proliferation and hypertrophy.

In summary, the results from this study demonstrate that overexpression of c-Jun downregulates expression of the K\textsubscript{a} channel \(\alpha\)-subunit (Kv1.5) and upregulates expression of the \(\beta\)-subunit (Kv\textsubscript{b}\textsubscript{2}) in PASMCs. The resultant decrease in I\textsubscript{K(V)} causes membrane depolarization and stimulates cell proliferation by raising [Ca\textsuperscript{2+}]\textsubscript{cyt}. A similar increase in [Ca\textsuperscript{2+}]\textsubscript{cyt} and membrane depolarization due to decreased K\textsubscript{a} channel activity in PASMCs have been implicated in hypoxic pulmonary vasoconstriction29–31 and primary pulmonary hypertension.32 Further studies are necessary to determine whether upregulated c\texttextit{-jun} transcription and increased c-Jun function are responsible for the inhibited expression of K\textsubscript{a} channels in patients with primary pulmonary hypertension and the downregulation of K\textsubscript{a} channel \(\alpha\)-subunits in chronic hypoxia.

Acknowledgments

This work was supported by NIH grants HL-54043 and HL-64549. Dr Yuan is an Established Investigator of the American Heart Association.

References

10. Yuan X-J. Voltage-gated K\textsuperscript{+} currents regulate resting membrane potential and [Ca\textsuperscript{2+}], in pulmonary arterial myocytes. Circ Res. 1995;77:370–378.
c-Jun Decreases Voltage-Gated K⁺ Channel Activity in Pulmonary Artery Smooth Muscle Cells

Ying Yu, Oleksandr Platoshyn, Jifeng Zhang, Stefanie Krick, Ying Zhao, Lewis J. Rubin, Abraham Rothman and Jason X.-J. Yuan

Circulation. 2001;104:1557-1563

doi: 10.1161/hc3801.095662

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/104/13/1557

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/