Influence of Hypoxia on Nitric Oxide Synthase Activity and Gene Expression in Children With Congenital Heart Disease
A Novel Pathophysiologica...
congenital heart disease offer a unique opportunity to investigate these issues. Hence, the aim of the present study was to analyze the relationship between the expression of NOS isoforms and hypoxia in cardiac tissue of infants with cyanotic and acyanotic congenital heart defects, to test the hypothesis that NOS expression is influenced by oxygen tension.

Methods

Subjects
The right atrial appendage (30 mg) was excised from 18 consecutive infants undergoing cardiac surgery, before cardiopulmonary bypass. Patients were divided into 2 groups: A, 9 infants with acyanotic congenital heart disease without pulmonary hypertension; and B, 9 infants with cyanotic congenital heart disease with SaO₂<90%.

In all cases, the atrial tissue was obtained, immediately frozen in liquid nitrogen, and stored at ~8°C for subsequent biochemical analysis.

2D echocardiography was used to confirm the diagnosis in all infants and to estimate pulmonary arterial pressure in the acyanotic group. Preoperative cardiac catheterization also was performed in 7 infants in the cyanotic group.

Hemodynamic data were obtained at the time of surgery before cardiopulmonary bypass onset. Heart rate was obtained by direct electronic monitoring with a Hewlett-Packard (HP) monitor; arterial blood pressure was obtained by a direct invasive method using a pressure transducer (HP-104). Blood samples from a radial or femoral arterial catheter were obtained in both groups at the time of tissue biopsy to determine PaO₂, PacO₂, SaO₂, and pH by direct measurement (Meter EML-100). Infants were ventilated during surgery in a Drager EVITA 2 ventilator, in volume control modality, FiO₂=50%.

Informal consent was obtained from all parents before the procedure. The protocol was approved by the human subjects review committee.

NOS Activity Measurement

NOS activity was measured in supernatants from right atrial tissue as described by McKee et al,1 with some modifications. The NOS assay was performed in supernatants from right atrial tissue as described by McKee et al., with some modifications. The NOS assay was performed in supernatants from right atrial tissue as described by McKee et al,12 with some modifications. The NOS activity was measured in supernatants from right atrial tissue as described by McKee et al,12 with some modifications. The NOS assay was performed in supernatants from right atrial tissue as described by McKee et al,12 with some modifications. The NOS assay was performed in supernatants from right atrial tissue as described by McKee et al,12 with some modifications. The NOS assay was performed in supernatants from right atrial tissue as described by McKee et al,12 with some modifications. The NOS assay was performed in supernatants from right atrial tissue as described by McKee et al,12 with some modifications. The NOS assay was performed in supernatants from right atrial tissue as described by McKee et al,12 with some modifications.

Time-Melated NOS Assay

Tissue was homogenized in ice-cold Tris-HCl buffer (mmol/L: Tris-HCl 20, EDTA 10, EGTA 10; pH 7.4) with a Teflon homogenizer. Each homogenate was centrifuged at 12 000 g at 4°C. Supernatants were removed, and the NOS assay was performed in the presence of NOS inhibitor (RNaseIn, Promega Corp). 1 μg of total RNA from each preparation was reverse transcribed in the presence of RNase inhibitor (RNAsIn, Promega Corp) in a reaction volume of 20 μL containing 50 mmol/L Tris-HCl (pH 8.3), 75 mmol/L KCl, 3.0 mmol/L MgCl₂, 10 mmol/L DTT, 2.0 mmol/L dNTP, 200 U of Moloney murine leukemia virus reverse transcriptase (M-MLV RT; Gibco BRL, 1 μg of oligodT) 12 to 18 primer. The reaction was carried out at room temperature for 10 minutes and at 23°C for 60 minutes and terminated by heating at 100°C for 5 minutes. The reverse-transcribed cDNA (2 μL) was amplified in a final volume of 50 μL by polymerase chain reaction (PCR) under standard conditions (1.5 mmol/L MgCl₂, 450 μmol/L dNTP, 2.5 U Taq polymerase) with specific primers for human eNOS and iNOS and rat GAPDH designed on the basis of published cDNA sequences (Teng et al14). GAPDH was used as an internal control for the coamplification. To identify the optimal amplification conditions, a series of pilot studies was performed with a thermal cycler with temperature gradient at the annealing step (Eppendorf Mastercycler gradient, Eppendorf-Netheter-Hinz), various amounts of reverse transcription (RT) products from 2 to 200 ng RNA, and 20 to 35 cycles of PCR amplification. The primers and experimental conditions for RT-PCR are summarized in Figure 1. The amplification was carried out with an initial denaturing cycle at 94°C for 5 minutes and the subsequent cycles as follows: denaturation at 94°C, 30 seconds; annealing (as described in Table 1); and extension, 45 seconds at 72°C. PCR products (10 μL per lane) were electrophoresed with 1% agarose gel containing ethidium bromide 0.5 μg/mL. The gel was subjected to ultraviolet light and photographed. The band intensities were measured by use of a software package (Kodak Digital Science, Eastman Kodak Co), and the signals were expressed relative to the intensity of the GAPDH amplicon in each coamplified sample.

TABLE 1. Arterial Blood Gas Values (Room Air) Before Surgery: Cyanotic Group

<table>
<thead>
<tr>
<th>Patient</th>
<th>SaO₂ (%)</th>
<th>PacO₂ (mm Hg)</th>
<th>PacO₂ (mm Hg)</th>
<th>pH</th>
<th>Arterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>57</td>
<td>33</td>
<td>7.41</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>46</td>
<td>35</td>
<td>7.40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>37</td>
<td>35</td>
<td>7.30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>38</td>
<td>34</td>
<td>7.33</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>42</td>
<td>40</td>
<td>7.41</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>88</td>
<td>65</td>
<td>34</td>
<td>7.42</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>40</td>
<td>39</td>
<td>7.35</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>48</td>
<td>30</td>
<td>7.42</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>78</td>
<td>27</td>
<td>25</td>
<td>7.31</td>
<td></td>
</tr>
</tbody>
</table>
Multivariate ANOVA was used to compare eNOS and iNOS activities and expression between acyanotic and cyanotic groups. The comparisons of age, weight, and sex distributions between cyanotic and acyanotic groups were done with the Kruskal-Wallis test for continuous variables and Pearson χ^2 test for categorical variables. Pearson correlation coefficients were calculated to study the relation of eNOS and iNOS activity and expression and levels of SaO_2, PaO_2, PaCO_2, and pH. A value of $P<0.05$ was considered significant.

Results

Statistical Analysis

Multivariate ANOVA was used to compare eNOS and iNOS activities and expression between acyanotic and cyanotic groups. The comparisons of age, weight, and sex distributions between cyanotic and acyanotic groups were done with the Kruskal-Wallis test for continuous variables and Pearson χ^2 test for categorical variables. Pearson correlation coefficients were calculated to study the relation of eNOS and iNOS activity and expression and levels of SaO_2, PaO_2, PaCO_2, and pH. A value of $P<0.05$ was considered significant.

Patient Characteristics

Among the 9 infants with acyanotic congenital heart disease, there were 5 girls and 4 boys. The underlying diagnoses were atrial septal defect (ASD) secundum, 3 patients; ventricular septal defect (VSD) perimembranous, 4 patients; and VSD associated with ASD, 2 patients.

Among the 9 infants with cyanotic heart defects, 5 were boys and 4 girls. The basic diagnoses were tetralogy of Fallot, 4 patients; complete transposition of the great arteries, 2 patients; tricuspid atresia, 1 patient; pulmonic atresia, 1 patient; and hypoplastic left heart syndrome, 2 patients. Patient characteristics are shown in Tables 1, 2, 3, and 4.

eNOS and iNOS Activities

The eNOS activity was significantly lower in cyanotic than in acyanotic hearts: 0.38 ± 0.14 versus 1.06 ± 0.11 pmol \cdot mg$^{-1}$ \cdot min$^{-1}$; $P<0.0001$ (Figure 2a). In contrast, iNOS activity was significantly augmented in the cyanotic compared with the acyanotic group: 7.04 ± 1.20 versus 4.17 ± 1.10 pmol \cdot mg$^{-1}$ \cdot min$^{-1}$; $P<0.0001$ (Figure 2b).

eNOS and iNOS Expression

The eNOS expression was significantly lower in cyanotic than in acyanotic hearts: 0.54 ± 0.08 versus 0.80 ± 0.10 relative optical density (ROD) of cDNA; $P<0.0001$ (Figure 3a). Conversely, iNOS expression was significantly augmented in the cyanotic compared with acyanotic group: 2.55 ± 0.11 versus 1.91 ± 0.18 ROD of cDNA; $P<0.0001$ (Figure 3b).

In Figure 4, the results of RT-PCR assays for detection of eNOS and iNOS expression measured in 1 child of each group are shown (see legend).

NOS Activities and Expressions and Blood Gases

There were no statistically significant correlations between SaO_2, PaO_2, PaCO_2, or pH and NOS activities and expressions in both groups, and there also were no statistically significant correlations between arterial blood gas values before surgery in the cyanotic group and NOS gene expression.

Discussion

The present study shows that activity and gene expression of eNOS assessed in the right atrial appendage of infants with congenital heart disease are significantly lower in cyanotic than in acyanotic infants; in contrast, activity and expression of iNOS are significantly higher in cyanotic than in acyanotic children. To the best of our knowledge, this is the first study documenting these facts in human beings. Hypoxia elicits a variety of adaptive responses at the tissue, cellular, and molecular levels; these responses require an O$_2$ sensor coupled to a signal transduction system, which in turn activates the functional response. Although much has been learned about the signaling systems activated by hypoxia, no consensus exists regarding the nature of the underlying O$_2$ sensors.15 This study showed that changes in the pattern of NOS isoforms underlie the pathophysiological consequences of

Table 2. Comparisons of Age, Weight, and Sex Variables Between Cyanotic and Acyanotic Groups

<table>
<thead>
<tr>
<th>Variable, Descriptive Statistic</th>
<th>Group</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>11.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Minimum</td>
<td>5.00</td>
<td>0.10</td>
</tr>
<tr>
<td>Maximum</td>
<td>156.00</td>
<td>60.00</td>
</tr>
<tr>
<td>Weight, kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>8.70</td>
<td>3.60</td>
</tr>
<tr>
<td>Minimum</td>
<td>4.50</td>
<td>2.80</td>
</tr>
<tr>
<td>Maximum</td>
<td>46.00</td>
<td>16.00</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F, n</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>M, n</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

*Kruskal-Wallis test P value.
†Pearson χ^2 test P value.

Table 3. Clinical and Hemodynamic Characteristics: Acyanotic Group

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age, mo</th>
<th>Weight, kg</th>
<th>Diagnosis</th>
<th>HR, bpm</th>
<th>ABP, mm Hg</th>
<th>SaO_2, %</th>
<th>PaO_2, mm Hg</th>
<th>PaCO_2, mm Hg</th>
<th>pH, *</th>
<th>Arterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>7</td>
<td>6.2</td>
<td>VSD</td>
<td>138</td>
<td>78/48</td>
<td>99</td>
<td>190</td>
<td>32</td>
<td>7.37</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>156</td>
<td>46</td>
<td>VSD</td>
<td>104</td>
<td>80/45</td>
<td>99</td>
<td>109</td>
<td>30</td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>21</td>
<td>8.7</td>
<td>ASD</td>
<td>132</td>
<td>75/50</td>
<td>98</td>
<td>132</td>
<td>27</td>
<td>7.49</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>5</td>
<td>5.5</td>
<td>VSD</td>
<td>130</td>
<td>82/40</td>
<td>99</td>
<td>98</td>
<td>33</td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>11</td>
<td>7.0</td>
<td>VSD</td>
<td>116</td>
<td>80/41</td>
<td>98</td>
<td>92</td>
<td>31</td>
<td>7.40</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>12</td>
<td>7.0</td>
<td>VSD + ASD</td>
<td>128</td>
<td>78/42</td>
<td>98</td>
<td>104</td>
<td>36</td>
<td>7.51</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>46</td>
<td>12.0</td>
<td>VSD</td>
<td>104</td>
<td>85/50</td>
<td>99</td>
<td>168</td>
<td>23</td>
<td>7.59</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>84</td>
<td>33</td>
<td>ASD</td>
<td>102</td>
<td>85/51</td>
<td>98</td>
<td>180</td>
<td>25</td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>10</td>
<td>5.8</td>
<td>VSD + ASD</td>
<td>120</td>
<td>80/50</td>
<td>99</td>
<td>102</td>
<td>27</td>
<td>7.47</td>
<td></td>
</tr>
</tbody>
</table>

HR indicates heart rate; ABP, arterial blood pressure.

*Values obtained at surgery when infants were ventilated with $\text{FiO}_2=100\%$.
hypoxia in cyanotic congenital heart disease. This raises the possibility that changes in reactive nitrogen species may be involved in adaptive mechanisms to chronic hypoxia. It should be noted that the acyanotic children were older than the cyanotic ones, although the difference was not statistically significant; however, the nature of our study does not permit us to exclude or confirm the influence of age on the results.

Hypoxia occurs commonly in cardiopulmonary diseases. Previous studies in failing hearts indicated that eNOS activity and expression in cardiac tissue can be downregulated in low contractile states. Our study suggests another mechanism that seems to downregulate eNOS activity by oxygen tension. In both mechanisms, shear stress and oxygen seem to work as input signals.

Studies of the effects of hypoxia on eNOS activity and expression, however, have yielded conflicting results. Hypoxic incubation (zero O₂ for 24 hours) decreased eNOS activity and expression in endothelial cells from human umbilical cords and saphenous veins. In contrast, Arnet et al reported that eNOS activity and expression were increased in bovine aortic endothelial cells after 24 hours of incubation at 1% O₂. This variability probably reflects differences in species and vascular beds, methods used to maintain the cells, and duration and severity of the hypoxic exposures. Our findings of downregulation of eNOS activity and expression in cardiac tissue of hypoxic patients is in agreement with the findings of Toporsian et al. These authors showed, in rat aorta in vivo, that hypoxic downregulation of eNOS expression is a relevant mechanism used by endothelium to allow a predominance of substances that enhance vascular contraction through the removal of an inhibitor of vasoconstriction, seeking to redistribute the flow to vital organs in hypoxic conditions. We found, in cardiac tissue, the same relationship as occurred in the rat aorta. One possible mechanism to explain the downregulation of eNOS in hypoxic cardiac tissue would be the production of NO by increasing iNOS expression and activity.

Studies of iNOS expression under hypoxic conditions offered contradictory results in animal species as well. Thus, Kacimi et al found that hypoxia is a negative regulator of iNOS in neonatal rat myocytes. Jung et al and Kitakaze et al, however, also using rat myocytes, found the opposite. In addition, Melillo et al found increased iNOS expression by hypoxia in a macrophage cell line. Human cardiac cells had not been investigated, however, under hypoxic conditions with regard to iNOS activity and gene expression.

The meaning of higher iNOS expression and activity found in the cyanotic group compared with the acyanotic group remains speculative. We hypothesize that it may represent an alternative pathway to equilibrate the balance between relaxing and constrictor factors in cardiovascular system subjected to chronic hypoxia.

In the present study, although samples from atrial appendages of patients with acyanotic heart diseases cannot be considered matched controls, they also show a clear presence of iNOS expression, although their levels were lower than in cyanotic
children. One unanswered question is what the levels of iNOS expression in normal children would be. It is possible that our patients have a systemic activation of cytokines due to their underlying cardiac diseases, or there might be a mechanism to increase NO production by the iNOS pathway to counterbalance vasoconstrictor substances in some diseases.

Study Limitations

Some limitations must be considered. For instance, demonstration of NOS activities in tissue homogenates cannot identify the cell type expressing NOS within the myocardium. We applied the citrulline assay to NOS activities as established by Moncada’s group.18 This approach to differentiating constitutive and inducible activity, based on the Ca++ independence to iNOS, has its limitations. The data obtained by measurement of NOS expression are considered more specific for eNOS. Also, it cannot be assumed a priori that the release of free NO is enhanced in cyanotic hearts, because high-output iNOS activity may be associated with cofactor deficiency and release of superoxide and other reactive NO species.27 Finally, the potential effect of mechanical stress on the right atrium cannot be excluded. Right atrial pressure and/or size was not measured in either group of children; therefore, such a potential influence on our results remains speculative.

Conclusions

Our data indicate that hypoxia downregulates eNOS expression in cardiac tissue from patients with cyanotic congenital heart disease, supporting the idea that O2 tension probably regulates eNOS activity and expression. The higher values of iNOS expression in cyanosis may indicate an alternative mechanism to compensate for the diminished production of NO by endothelial cells in response to hypoxia. Overall, the data unravel a novel adaptive mechanism of the cardiovascular system in hypoxic conditions.

References

Influence of Hypoxia on Nitric Oxide Synthase Activity and Gene Expression in Children With Congenital Heart Disease: A Novel Pathophysiological Adaptive Mechanism
Carlos Regenga Ferreiro, Antonio Carlos Palandri Chagas, Maria Helena Catelli Carvalho, Ana Paula Dantas, Marcelo Biscegli Jatene, Luiz Carlos Bento de Souza and Protásio Lemos da Luz

Circulation. 2001;103:2272-2276
doi: 10.1161/01.CIR.103.18.2272

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/103/18/2272

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/