Impact of Sex and Gonadal Steroids on Prolongation of Ventricular Repolarization and Arrhythmias Induced by I_K-Blocking Drugs

Thai V. Pham, PhD; Eugene A. Sosunov, PhD; Ravil Z. Gainullin, PhD; Peter Danilo, Jr, PhD; Michael R. Rosen, MD

Background—Mechanisms for longer rate-corrected QT intervals and higher incidences of drug-induced torsade de pointes in women than in men are incompletely defined, although gonadal steroids are assumed to be important determinants of these differences.

Methods and Results—We used microelectrode techniques to study isolated rabbit right ventricular endocardium from control male and female and castrated male (ORCH) and female (OVX) rabbits. Action potential duration to 30% repolarization (APD$_{30}$) was significantly shorter in male than female and in ORCH than OVX at a cycle length of 500 ms. The I_K blocker chromanol 293B had no effect on APD in males or females. The I_K blocker dofetilide prolonged APD in female and ORCH more than in male and OVX. At 10^{-6} mol/L dofetilide (cycle length = 1 second), the incidence of early afterdepolarizations was: female, 67%; ORCH, 56%; male, 40%; and OVX, 28%. Serum 17β-estradiol levels were unrelated to the effects of dofetilide, but as testosterone levels increased, the dofetilide effect to increase APD diminished, as did early afterdepolarization incidence.

Conclusions—Sex-related differences in basal right ventricular endocardial AP configuration persist in castrated rabbits, suggesting that extragonadal factors contribute to the differences in ventricular repolarization. In this model, drugs that block I_K but not I_{KS} prolong repolarization in a way that suggests protection from excess prolongation in males is attributable to testosterone, whereas the risk of excess prolongation of repolarization in females is related to sex-determined factors in addition to estrogen. (*Circulation*. 2001;103:2207-2212.)

Key Words: sex ■ steroids ■ arrhythmias ■ ion channels ■ drugs

Repolarization-prolonging drugs induce torsade de pointes (TdP) more frequently in women than men.1,2 Similarly, in the congenital long-QT syndrome, female sex is an independent risk factor.3 The higher propensity toward arrhythmia in women is associated with differences in normal cardiac repolarization such that rate-corrected QT intervals are longer in women than in men and T waves in men have steeper ascending and descending slopes than in women.4–6

Experimental data concerning sex differences in electrophysiological properties are derived largely from experiments on oophorectomized female rabbits treated long-term with gonadal steroids as surrogates for sex-based effects. Surface electrogram QT intervals were longer and QT prolongation induced by quinidine was greater in isolated hearts from estrogen-treated than testosterone-treated oophorectomized rabbits.7 Similarly, ventricular endocardial action potential duration (APD) of oophorectomized 17β-estradiol–treated rabbits was longer and early afterdepolarizations (EADs) induced by the I_K blocker E4031 were more frequent than with 5α-dihydrotestosterone.8 In the only report in normal males and females, isolated female rabbit hearts had longer QT intervals than males at a cycle length (CL) of 2.3 seconds.9

It remains unclear whether sex-based differences in repolarization and responsiveness to I_K blockers are due entirely to gonadal steroids or are associated with other sex-related factors. In this study we asked: Are there sex-related differences in (1) the ventricular AP at physiological CLs and (2) occurrence of EAD induced by drugs that block I_K and I_{KS}? Are gonadal steroids the unique determinants of sex-related differences in ventricular repolarization and EAD?

Methods

This investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US Public Health Service, NIH publication No. 85-23, 1996.

Key Words:

- sex
- steroids
- arrhythmias
- ion channels
- drugs

Received October 18, 2000; revision received December 6, 2000; accepted December 14, 2000.

From the Departments of Pharmacology (T.V.P., E.A.S., R.Z.G., P.D., M.R.R.) and Pediatrics (M.R.R.) and Center for Molecular Therapeutics (M.R.R.), The Partnership for Women’s Health (M.R.R.), College of Physicians and Surgeons of Columbia University, New York, NY.

The first 2 authors contributed equally to this work.

Correspondence to Michael R. Rosen, MD, Gustavus A. Pfeiffer Professor of Pharmacology, Professor of Pediatrics, Director, Center for Molecular Therapeutics, Department of Pharmacology, College of Physicians and Surgeons of Columbia University, 630 W 168th St, PH7West-321, New York, NY 10032. mrr1@columbia.edu

© 2001 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org

2207
Five female and 11 male New Zealand White rabbits (Hare Marland, Hewitt, NJ) (50 to 60 days old, 1.8 to 2.5 kg) were anesthetized with 2% isoflurane and O2 and underwent gonadectomy under sterile techniques. Animals were fed water and Rabbit Diet HF 5326 (Laboratory diet, Purina Mills), which contains phytoestrogen. This has estrogenic effects but was a constant in all experiments. Two weeks after surgery, oophorectomized (OVX) females were implanted with 60-day sustained-release pellets (Innovative Research of America) of vehicle. Orchitectomized (ORCH) males were treated with pellets of vehicle, 17β-estriadiol (EST), or 5α-dihydrotestosterone (DHT). Rabbits were treated with hormones for 4 to 5 weeks before experimental studies. Another 5 females and 5 males were raised to the same age and studied as controls.

Before euthanasia, 2 mL of blood was obtained and serum was stored at −20°C for analysis. EST was measured by a solid-phase chemiluminescence immunoassay (Inmume, Diagnostic Products Co, DPC; sensitivity 20 pg/mL). DHT was measured by radioimmunoassay (Diagnostic Systems Laboratories) coupled with an oxidation/extraction procedure to remove testosterone (sensitivity 4 pg/mL).

All rabbits (3.0 to 3.5 kg at the time of terminal experiment) were anesthetized with sodium pentobarbital (30 mg/kg IV), and the hearts were excised and immersed in Tyrode’s solution equilibrated at 37°C with 95% O2/5% CO2. The solution contained (mmol/L) NaCl 131, NaHCO3, 18, KCl 4.1, MgCl2 0.5, NaHPO4 1.8, and dextrose 5.5. Right ventricular (RV) papillary muscles (3 to 5 mm long, 0.3 to 1 mm in diameter) were dissected and placed in a 4-mL chamber perfused with Tyrode’s solution (37°C, pH 7.4) at 12 mL/min. Right epicardial preparations isolated from the midbasal RV were studied in males and females only. Stimulation and recording techniques have been described.8

Selection of tissue for microelectrode study was based on preliminary experiments demonstrating no differences in repolarization duration between left ventricular (LV) and RV sites in OVX females. LV and RV epicardial monophasic action potential (MAP) durations to 90% repolarization (MAPD90) did not differ (133±2 and 141±3; n=26 and 17, respectively). Moreover, percent prolongation of repolarization induced by 2 and 5 μmol/L azimilide (a nonspecific IKr blocker, provided by Procter and Gamble) was similar in the LV and RV (2 μmol/L azimilide: 14±4% and 23±5%, n=26 and 17; 5 μmol/L azimilide: 35±3% and 42±7%, n=25 and 13, respectively). Because no interventricular difference in repolarization or effects of IKr blockade on MAP prolongation were found, we did all transmembrane AP recordings in isolated RV.

To compare transmural APD dispersion, APs were recorded from RV endocardial (papillary muscle) and epicardial preparations obtained from the same animal. We did not prepare transmural RV slab preparations, because the RV wall is very thin in rabbits of this age. Thus, we compared transmural APD dispersion as APD differences between epicardial and papillary muscle.

Predrug measurements of AP were made at CLs=1000, 500, and 330 ms, with 3 minutes allowed to achieve steady state at each CL. Each drug concentration was superfused for 30 minutes before measurements were made.

A 0.2 mol/L stock solution of the IKr blocker chromanol 239B11 (a gift from Hoechst Marion Roussel, Frankfurt, Germany) was prepared. DMSO 1% induces prolongation of APD by 4%.12 In our experiments, 10−5 mol/L chromanol Tyrode’s solution contained 0.005% DMSO. Thus, the effect of DMSO on APD was negligible. The IKr blocker dofetilide13,14 (a gift from Helopharm, Berlin, Germany) was dissolved in water to obtain a 10−5 mol/L stock solution before every experiment.

Because of discrepancies in the literature regarding IKr in rabbit myocardocytes, IKr was present and sensitive to dofetilide in 4 of 4 cells, and IKr was present and sensitive to chromanol 293B in 3 of 3 cells (Figure 1).

Data are reported as mean±SEM. Student’s t test was used to compare single parameters between independent pairs. Dose-response relationships were analyzed by ANOVA for multiple comparisons and Bonferroni’s or Dunnett’s test when appropriate.
accurately. EAD incidence was greatest in normal females and ORCH males (Figure 3).

Effects of Gonadal Steroids

EST levels were similar among all groups except ORCH males treated with EST (ORCH-EST), whose levels were higher (Table). DHT levels were greater in males and ORCH males treated with DHT (ORCH-DHT) than other groups.

Dofetilide induced a smaller \(\Delta APD_{90} \) in OVX than control females and larger \(\Delta APD_{90} \) in ORCH than control males (Figure 4A). Because EST levels were similar in all groups, we infer that EST is not a necessary determinant of the effects of dofetilide on APD. In contrast, ORCH males had lower DHT levels and a greater \(\Delta APD_{90} \) induced by dofetilide than control males (Figure 4B), suggesting that DHT may protect males against dofetilide-induced APD prolongation. Therefore, we prepared additional ORCH male rabbits treated with EST (ORCH-EST) or DHT (ORCH-DHT) to assess hormonal impact on dofetilide responsiveness (hormone levels in the Table). DHT replacement in ORCH males diminished the effects of dofetilide on APD (Figure 5A). Whereas ORCH and ORCH-EST males had a significant EAD incidence in the presence of dofetilide (10^(-6) mol/L), normal males and ORCH-DHT males did not (Figure 5B).

Epicardial AP

\(\Delta APD_{90} \) and \(\Delta APD_{90} \) were similar in female and male epicardium at all CLs (Figure 6). Dofetilide prolonged epicardial APD equivalently in females and males (Figure 6). There were no EADs. Chromanol 293B had no effect on epicardial APD. At CL = 1000 ms, predrug control \(\Delta APD_{90} \) (female: 165 ± 4 ms, n = 14; male: 171 ± 7 ms, n = 12) did not differ from \(\Delta APD_{90} \) in the presence of 10^(-5) mol/L chromanol 293B (female: 159 ± 6 ms, n = 14; male: 161 ± 7 ms, n = 12, \(P > 0.05 \)). Because there were no sex-related differences in APD and effects of \(I_K \) blockade in epicardium, we did not

Figure 2. Sex- and gonadectomy-related differences in endocardial AP. Top, Papillary muscle AP of female, male, OVX female, and ORCH male at CL = 500 ms. Middle and bottom, \(APD_{30} \) and \(APD_{90} \), respectively, in all 4 groups. n = 51, 56, 14, and 17 for females, males, OVX females, and ORCH males, respectively.

Figure 3. Effects of dofetilide on APD and EAD incidence at CL = 1000 ms. Top, Representative AP; C indicates control; Dof, 10^(-6) mol/L dofetilide. Middle, Relationship of \(\Delta APD_{90} \) to increasing dofetilide concentrations. For control values see Figure 2. Bottom, Incidence of EADs induced by dofetilide. n = 12, 10, 13, and 16 for female (●), male (○), OVX (□), and ORCH (●), respectively. \(*P < 0.05 \) vs OVX and control male; \(+P < 0.05 \) vs respective predrug control.

Figure 4. Relationship between serum EST and DHT levels and changes in \(\Delta APD_{90} \) (vs baseline) induced by dofetilide (10^(-6) mol/L) at CL = 1000 ms. A, Lack of relationship of EST levels to \(\Delta APD_{90} \). B, Relationship between DHT levels and \(\Delta APD_{90} \) in males. n and \(\Delta APD_{90} \) values are as in Figure 3. \(*P < 0.05 \) vs respective controls.

Figure 5. A, Relationship between serum EST and DHT levels and changes in \(\Delta APD_{90} \) (vs baseline) induced by dofetilide (10^(-6) mol/L) at CL = 1000 ms. A, Lack of relationship of EST levels to \(\Delta APD_{90} \). B, Relationship between DHT levels and \(\Delta APD_{90} \) in males. n and \(\Delta APD_{90} \) values are as in Figure 3. \(*P < 0.05 \) vs respective controls.

Figure 6. Relationship between serum EST and DHT levels and changes in APD at CL = 1000 ms. A, Lack of relationship of EST levels to APD. B, Relationship between DHT levels and \(\Delta APD_{90} \) in males. n and \(\Delta APD_{90} \) values are as in Figure 3. \(*P < 0.05 \) vs respective controls.

Table: Serum Hormone Levels

<table>
<thead>
<tr>
<th>hormone</th>
<th>pg/mL</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>17α-Estradiol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>30±3</td>
<td>7</td>
</tr>
<tr>
<td>OVX</td>
<td>26±1</td>
<td>14</td>
</tr>
<tr>
<td>Male</td>
<td>29±2</td>
<td>9</td>
</tr>
<tr>
<td>ORCH</td>
<td>35±7</td>
<td>4</td>
</tr>
<tr>
<td>ORCH-EST</td>
<td>560±5*</td>
<td>5</td>
</tr>
<tr>
<td>ORCH-DHT</td>
<td>22±1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hormone</th>
<th>pg/mL</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>5α-Dihydrotestosterone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>22±1</td>
<td></td>
</tr>
<tr>
<td>OVX</td>
<td>21±3</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>671±112*</td>
<td></td>
</tr>
<tr>
<td>ORCH</td>
<td>16±3</td>
<td></td>
</tr>
<tr>
<td>ORCH-EST</td>
<td>19±2</td>
<td></td>
</tr>
<tr>
<td>ORCH-DHT</td>
<td>633±252*</td>
<td></td>
</tr>
</tbody>
</table>

\(n \) indicates number of rabbits per group. Results are from larger groups of rabbits, of which those in the present study were a subset.

\(*P < 0.05 \) vs hormone levels of respective placebo groups.
determine the influence of gonadectomy on epicardial APD and response to drugs.

Endocardium Versus Epicardium

There are sex-related differences in transmural dispersion of APD30 but not APD 90 in control female compared with male rabbits (Figure 7, A and B). Transmural APD 90 dispersion became apparent in the presence of dofetilide, which also induced EADs in male and female endocardium but not epicardium.

Discussion

Sex and AP

APD 90 is longer in papillary muscles of female than male rabbits, and females manifest greater transmural dispersion of APD 90. These disparities may contribute to sex-related differences in the slopes of the ascending and descending limbs of the T wave. These findings imply not only sex-related differences in ionic currents responsible for early repolarization but also greater transmural dispersion of currents contributing to repolarization in females. In the only report of sex (as opposed to hormonal) differences, ion currents, and repolarization, I\(\text{Kr} \) density was smaller in female than male rabbit ventricle.9 These results may explain the longer APD 90 in females but not the equal APD 90.

Although we found no significant difference in APD 90, females and O VX females had ~3% longer APD 90 than males and ORCH males. This small difference is consistent with the 2% to 6% differences in QTc reported between men and women.4,5 Furthermore, in some series, baseline QTc differences were not even demonstrable between men and women (for example, see Reference 1).

Sex Differences in Drug Response

Dofetilide induced greater APD 90 prolongation, EAD incidence, and dispersion of repolarization in females than males. These conditions put females at greater risk for TdP.15,16 Interestingly, we found no effect of chromanol 293B on APD in epicardium or endocardium, although we did demonstrate I\(\text{Ks} \) and chromanol blockade in isolated myocytes. It is possible that in intact tissue, I\(\text{Ks} \) does not contribute significantly to the normal rabbit ventricular AP, an interpretation consistent with findings in dogs.17

Transmural dispersion resulting from I\(\text{Kr} \) blockade suggests epicardial-endocardial differences in I\(\text{Kr} \) or other currents contributing to repolarization. Whereas I\(\text{Kr} \) density is greater in subepicardial than subendocardial guinea pig myocytes,18 no transmural gradient in I\(\text{Kr} \) density was seen in dogs, although I\(\text{Kr} \) density was lower in midmyocardium than endocardium and epicardium.19 These data illustrate species-dependent differences in transmural I\(\text{Kr} \) expression. Although there are no reports of epicardial-endocardial gradients of I\(\text{KCa} \), I\(\text{Kr} \) density is greater in epicardium than papillary muscle in rabbit20 and other species.21,22 A larger epicardial I\(\text{Kr} \) could sufficiently repolarize the epicardium in the presence of dofetilide as opposed to the endocardium. Moreover, we have demonstrated a transmural gradient for I\(\text{KCa} \) in female but not male hearts (unpublished data). Such a gradient could contribute to transmural dispersion of repolarization and differences in occurrence of EADs.

Effects of Gonadectomy and Hormone Replacement

Serum EST levels in control females and DHT levels in control males (Table) are consistent with reported values.23,24 That extragonadal or nonestrogenic factors may contribute to sex differences in repolarization is suggested by the persistence of sex-related differences in AP after gonadectomy. Consistent with other reports,7,8 however, our results demonstrate that gonadal steroids modulate proarrhythmic responses to I\(\text{Kr} \) blockers.

Gonadectomy dramatically affected the response of papillary muscles to dofetilide (Figure 4). In males, orchectomy resulted in decreased DHT levels and increased dofetilde-
induced EADs. This is consistent with the hypothesis of the protective role of testosterone.7,8 Earlier studies,7,8 however, did not measure DHT levels and hence could not test whether DHT protects against the effects of \textit{I}KR blockade.

In females, oophorectomy reduced the risk of dofetilide-induced APD prolongation and EAD. The consistently low serum EST levels argue against a unique estrogenic basis for the greater risk for females of proarrhythmic effects of \textit{I}Kr blockade. Given the effect of oophorectomy to blunt the actions of dofetilide, it is probable that nonestrogenic ovarian or pituitary-hypothalamic factors are important to proarrhythmia. These factors may be influenced by progesterone or gonadotropins (eg, luteinizing hormone, follicle-stimulating hormone) whose levels could be altered by gonadectomy.

Clinical Implications

Virilized women have shorter JT intervals than castrated men.25 Moreover, males have longer JT intervals after orchiectomy.25 These results suggest that testosterone influences normal ventricular repolarization. In view of this, our demonstration of the action of testosterone may explain why in men the QTc interval shortens at puberty.26 Similarly, testosterone might account for the tendency toward age-dependent reduction in the numbers of male long-QT syndrome patients manifesting QT intervals >440 ms.27

The similar propensity for drug-induced TdP in premenopausal and postmenopausal women2 and lack of significant effects of hormone replacement therapy on QTc intervals in postmenopausal women28 argue that factors additional to those of estrogen contribute to sex-based differences in ventricular repolarization. The results of our study support this supposition.

The possibility that factors other than estrogen may contribute does not detract from the important role of estrogen in the proarrhythmic response to \textit{I}Kr blockers. For example, EST replacement in OVX rabbits excessively prolongs repolarization and increases incidence of EAD induced by \textit{I}Kr blockade,8 and EST (and DHT) downregulate HK2 and \textit{I}sk mRNA expression.7 These results suggest that EST modulates ion channels, thus affecting the AP in a manner resembling the influence of sex. Moreover, this and earlier studies8 demonstrate the potential for deleterious effects of chronic EST treatment. Although these observations might suggest that women receiving hormone replacement therapy would be at increased risk for drug-induced TdP, there are insufficient data concerning this matter.

In closing, testosterone appears to protect against the proarrhythmic effects of \textit{I}Kr blockade in males. In females, the situation is more complicated, implicating estrogen and other factors. It is important to learn more about EST and DHT modulation of ion channel function and how this modulation influences the response to cardiac and noncardiac \textit{I}Kr-blocking drugs, many of which induce arrhythmias.29 Given the wide spectrum of drugs that block \textit{I}Kr, the risk of administering such drugs to women must be carefully considered. Finally, the possible roles of progesterone and other hormones in sex-related differences in ventricular repolarization should receive greater attention.

Limitations

Female rabbits do not have menstrual cycles. Their serum estradiol levels remain constant and low (<100 pg/mL) and are unchanged by oophorectomy.23 In women, normal estradiol levels range from 130 to 400 pg/mL.30 Thus, the oophorectomized rabbit model fails to replicate the differences in estradiol levels between normal premenopausal and postmenopausal women. This could limit the interpretation and extrapolation of data referring to estradiol in females and restrict our ability to infer the possible role of physiological
estradiol concentrations in modulating ventricular repolarization in women.

We recorded action potentials from isolated RV endocardium and epicardium based on preliminary data from isolated rabbit hearts demonstrating no interventricular differences in epicardial MAPDs. These data are consistent with other data for rabbits. Nonetheless, regional disparities not taken into account might contribute clinically to male-female differences in repolarization.

Acknowledgments

Certain of the studies were supported by US Public Health Services–NHLBI grant HL-28958 and by Procter and Gamble Pharmaceuticals. We are grateful to Dr Penelope A. Boyden for helpful discussions, Dr Michel Ferin for measuring serum hormone levels, Dr Natalia Egorova for assisting with experiments, and Susan McMahon and Eileen Franey for careful attention to the preparation of the manuscript.

References

Impact of Sex and Gonadal Steroids on Prolongation of Ventricular Repolarization and Arrhythmias Induced by I_K-Blocking Drugs

Thai V. Pham, Eugene A. Sosunov, Ravil Z. Gainullin, Peter Danilo, Jr and Michael R. Rosen

Circulation. 2001;103:2207-2212
doi: 10.1161/01.CIR.103.17.2207

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/103/17/2207

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/