Sudden Death and Cardiovascular Collapse in Children With Restrictive Cardiomyopathy

Shannon M. Rivenes, MD; Debra L. Kearney, MD; E. O’Brian Smith, PhD; Jeffrey A. Towbin, MD; Susan W. Denfield, MD

Background—Restrictive cardiomyopathy (RCM) is rare in children, and the prognosis is poor. In the present study, we evaluated all pediatric patients with RCM who were at our institution during a 31-year period to determine the clinical outcome and cause of death. Those who sustained sudden, unanticipated cardiac arrests were evaluated for risk factors that are predictive of sudden death.

Methods and Results—Eighteen consecutive patients were reviewed. Presentation, clinical course, laboratory data, and histopathological evidence of ischemia were compared between patients with and without sudden death events. The results demonstrated that patients who were at risk for sudden death were girls with chest pain, syncope, or both at presentation and without congestive heart failure. Although not statistically significant for sudden death, Holter monitor evidence of ischemia predicted death within months. Histopathological evidence of acute or chronic ischemia was found in the majority of patients, with acute ischemia more common among those who sustained sudden death events.

Conclusions—All children with RCM are at risk for ischemia-related complications and death, and some are at risk of sudden death. In the present study, patients at risk of sudden death appeared well and had no evidence of ongoing heart failure but often had signs or symptoms of ischemia characterized by chest pain, syncope, or both. ECGs and Holter monitors may be useful screening tools. The use of β-blockade, the placement of an implantable cardioverter-defibrillator, and preferential status 1A or B listing for cardiac transplantation are proposed for pediatric patients with RCM and evidence of ongoing ischemia.

Key Words: pediatrics • cardiomyopathy • death, sudden • ischemia • syncope

Restrictive cardiomyopathy (RCM) is rare in children, constituting ~5% of diagnosed cardiomyopathies.1,2 With limited numbers of affected patients, the pediatric RCM literature is limited to case reports and case series.1–19 Two additional studies of pediatric cardiomyopathy contain an additional 4 patients with RCM.20,21 The pathophysiological mechanism that characterizes this disease is a primary abnormality of diastolic ventricular function with relative preservation of systolic function and left ventricular end-diastolic dimension.22 Prognosis for the pediatric patient is poor, with 2-year actuarial survival rates of <50%.1–3 Syncope at presentation carries a particularly poor prognosis, with deaths occurring within 4 months in 1 study.2 Other reported predictors of poor outcome include symptoms or radiographic evidence of pulmonary venous congestion at presentation.1,3 Sudden death has been reported, but the mechanism is unclear.2,5,14,19

The purpose of the present study was to evaluate all children with RCM at our institution for clinical outcome and the cause of death. Those who sustained sudden death events, defined as such only when the event was abrupt and unexpected,2,3 were evaluated for identifiable risk factors. Although ischemia-mediated events are rare in children, we hypothesized that the patients with RCM at a significant risk for sudden death were those with ongoing myocardial ischemia.

Methods

Study Population

All patients at our institution with RCM were retrospectively reviewed. Diagnostic criteria included (1) echocardiographic features of RCM (Figure 1A), including dilated atria, normal or nearly normal left ventricular systolic function, and no significant ventricular dilatation; (2) no echocardiographic evidence of hypertrophic cardiomyopathy; (3) no evidence of constrictive pericarditis; and (4) elevated end-diastolic ventricular pressures on cardiac catheterization. Supportive evidence included ECG features of RCM (Figures 2A and 2B) and a restrictive mitral inflow pattern by pulsed-wave Doppler. (Figure 1B).

Patients were divided into 2 groups: those with unanticipated sudden cardiac death events at a time of relative well-being [SCD(+)] and those without such events [SCD(−)]. Evaluation included chart review of symptoms, physical examination, clinical course, and timing and cause of death. Supportive evidence included ECG features of RCM (Figures 2A and 2B) and a restrictive mitral inflow pattern by pulsed-wave Doppler. (Figure 1B).
Follow-up. Of the SCD(+) patients, 1 was successfully resuscitated and underwent cardiac transplantation; the other 4 died. Of the SCD(−) patients, 5 underwent successful cardiac transplantation, and 7 died.

SCD(+) Group

Clinical Presentation and Demographics

Three of the 5 SCD(+) patients presented with syncope, 1 presented with chest pain, and 1 was evaluated for a murmur. All patients were female, between the ages of 1.6 and 10.5 years (mean 6.3±1.6 years). The time from symptom onset to diagnosis was 0 to 0.1 years (mean 0.02±0.04 years). None of the patients presented with signs or symptoms of heart failure, and none were in heart failure at the time of their arrest. Events occurred from 1 month to 3.5 years after diagnosis (mean 1.0±0.6 years, but 4 of 5 occurred within 6 months) and consisted of sudden death, aborted sudden death, or rapidly progressive cardiovascular collapse. One patient died abruptly after being startled by a sprinkler (patient 1). A second patient arrested after playing outside (patient 2). A third patient vomited and then had a cardiac arrest en route to the emergency department (patient 3). A fourth patient collapsed en route to a clinic visit and died within 12 hours despite emergent cardiopulmonary bypass and ventricular assist device placement (patient 4). The 1 survivor was resuscitated from an in-hospital arrest heralded by severe chest pain (patient 5).

Hemodynamic Data

Right- and left-heart catheterizations were performed in all 5 patients. LVEDP averaged 25.2±2.6 mm Hg, RVEDP averaged 13.4±1.3 mm Hg, and MPAP averaged 25±1.3 mm Hg. PVR index averaged 2.4±0.5 U·m⁻²·min⁻¹.

Laboratory Evidence of Ischemia

Review of the laboratory data from the SCD(+) patients revealed consistent evidence of ischemia. All 5 ECGs at presentation demonstrated ST-segment depression or T-wave inversion in the inferior, lateral, or anterior precordial leads (or a combination) (Figure 2B). All 5 Holter monitors revealed ST-segment depression (5.4 to 12.7 mm), and it was most pronounced at higher heart rates (Figure 3). In the survivor with chest pain, ST-segment depression to 8.2 mm preceded the development of torsade de pointes (Figures 4A and 4B).

Pathology Specimens

Pathology specimens (3 autopsies and 1 explantation) were available for 4 of the 5 SCD(+) patients. Acute ischemia (Figure 5A) was demonstrated in 3 of 4 hearts. In 2 cases, an acute left ventricular myocardial infarction was identified; the other demonstrated biventricular subendocardial ischemic necrosis. Chronic ischemia (Figure 5B) was evident in the fourth heart, with prominent myocyte lysis and vacuolization and extensive papillary muscle scarring. None of the 4 hearts had evidence of coronary artery obstruction.

SCD(−) Group

Clinical Presentation and Demographics

Nine of the 12 SCD(−) patients presented with signs and symptoms of heart failure, 1 had a murmur, and 1 had an irregular
rhythm, and 1 was evaluated for a positive family history. None presented with syncope. Eight patients were male and 4 were female, ranging in age from 0.7 to 12.2 years (mean 3.4±0.9 years). The time from symptom onset to diagnosis ranged from 0 to 2.6 years (mean 0.5±0.8 years). Seven children died (patients 11 to 17), 5 underwent successful orthotopic cardiac transplantation (patients 6 to 10), and 1 was lost to follow-up. The time from diagnosis to death or transplantation ranged from 4 days to 14 years (mean 3.3±1.3 years).

Hemodynamic Data
Cardiac catheterizations were performed in 12 of the 13 SCD(−) patients; the left heart was entered in 11. RVEDP, LVEDP, and PVR were uniformly elevated. LVEDP averaged 23.6±2.4 mm Hg, RVEDP averaged 14.5±1.3 mm Hg, and MPAP averaged 33±4.1 mm Hg. PVR index averaged 6.3±1.8 U·m².

Laboratory Evidence of Ischemia
Laboratory studies were not uniformly available. Among the available studies, evidence of ischemia was inconsistently noted. Thirteen patients had ECGs available for review. Eight ECGs had evidence of ischemia that consisted of ST-segment depression, T-wave inversion, pathological Q waves in the inferior or lateral precordial leads, or a combination. Two ECGs had no evidence of ischemia, and 2 other ECGs had a right bundle-branch block pattern that precluded analysis.

Seven patients had Holter monitor studies available for review; however, 4 studies had a bundle-branch block, paced ventricular rhythm, or both, which precluded ST-segment analysis. The remaining 3 had evidence of ischemia, with ST-segment depression ranging from 3 to 12.7 mm. Studies were performed 1 day to 8 months before death or transplantation.

Pathology Specimens
Pathology specimens were available for review in 9 of 12 SCD(−) patients. Of the 5 patients who underwent transplantation, 3 explanted hearts had evidence of chronic ischemia. One child had extensive fibrous scarring and myocytolysis in the left ventricular subendocardium and papillary muscles. The remaining 2 explants had a pattern of myocardial

Figure 2. ECG patterns in RCM. A, ECG without overt evidence of ischemia, demonstrating bialtrial enlargement and nonspecific ST-T-wave changes in inferior and lateral precordial leads. B, ECG with evidence of ischemia, demonstrating bialtrial enlargement and ST-segment depression in inferior, lateral, and lateral precordial leads.
scarring not suggestive of ischemia (Figure 5C); these were from the only SCD(\(^2\)) patients without chronic heart failure. No evidence of acute ischemia was noted in the explanted hearts.

Of the 4 patients who died and underwent autopsy, 3 had evidence of acute ischemia. Two hearts had acute hypotensive infarctions, and 1 demonstrated acute subendocardial ischemic necrosis. In both hearts with an infarction, there also were chronic ischemic changes with scarring and myocytolysis in the subendocardium, papillary muscles, or both. Chronic ischemia was not noted in the third heart, but papillary muscle sections were not available. The fourth heart had only chronic ischemic

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age at Diagnosis, y</th>
<th>Chief Complaint</th>
<th>Time From Symptoms to Diagnosis, y</th>
<th>SCD</th>
<th>CHF</th>
<th>Outcome</th>
<th>Time From Diagnosis to Death/Transplantation, y</th>
<th>Evidence of Ischemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>10.8</td>
<td>Syncope</td>
<td>0</td>
<td>Yes</td>
<td>No</td>
<td>Death</td>
<td>0.1</td>
<td>Yes, Yes, NA, NA</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>4.9</td>
<td>Syncope</td>
<td>0</td>
<td>Yes</td>
<td>No</td>
<td>Death</td>
<td>0.3</td>
<td>Yes, Yes, Acute, NA</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1.6</td>
<td>Murmur</td>
<td>0</td>
<td>Yes</td>
<td>No</td>
<td>Death</td>
<td>0.5</td>
<td>Yes, Yes, Chronic, NA</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>8.9</td>
<td>Syncope</td>
<td>0</td>
<td>Yes</td>
<td>No</td>
<td>Death</td>
<td>0.3</td>
<td>Yes, Yes, Acute, Bradycardia, asystole</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>5.3</td>
<td>CP</td>
<td>0.1</td>
<td>Yes</td>
<td>No</td>
<td>TX</td>
<td>3.5</td>
<td>Yes, Yes, Acute, Torsade de pointes</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>5.0</td>
<td>CHF</td>
<td>NA</td>
<td>No</td>
<td>Yes</td>
<td>TX</td>
<td>8.0</td>
<td>BBB, BBB, Chronic, NA</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>0.9</td>
<td>CHF</td>
<td>0.8</td>
<td>No</td>
<td>Yes</td>
<td>TX</td>
<td>3.9</td>
<td>Yes, BBB, Chronic, NA</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>2.5</td>
<td>Murmur</td>
<td>0.8</td>
<td>No</td>
<td>No</td>
<td>TX</td>
<td>0.2</td>
<td>Yes, NA, None, NA</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>2.5</td>
<td>Family history</td>
<td>0.1</td>
<td>No</td>
<td>No</td>
<td>TX</td>
<td>0.2</td>
<td>No, NA, None, NA</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>0.9</td>
<td>CHF</td>
<td>0.1</td>
<td>No</td>
<td>Yes</td>
<td>TX</td>
<td>1.5</td>
<td>Yes, Yes, Chronic, NA</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>4.0</td>
<td>CHF</td>
<td>2.6</td>
<td>No</td>
<td>Yes</td>
<td>Death</td>
<td>0.7</td>
<td>Yes, Yes, Chronic, VF</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>1.7</td>
<td>CHF</td>
<td>0.1</td>
<td>No</td>
<td>Yes</td>
<td>Death</td>
<td>1.6</td>
<td>Yes, Paced, Acute, chronic, VT, VF</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>1.6</td>
<td>CHF</td>
<td>0.9</td>
<td>No</td>
<td>Yes</td>
<td>Death</td>
<td>14.0</td>
<td>BBB, BBB, paced, NA, NA</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>4.1</td>
<td>CHF</td>
<td>0.9</td>
<td>No</td>
<td>Yes</td>
<td>Death</td>
<td>0.9</td>
<td>No, NA, Acute, VF</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>2.9</td>
<td>CHF</td>
<td>0.1</td>
<td>No</td>
<td>Yes</td>
<td>Death</td>
<td>0.6</td>
<td>Yes, Yes, Acute, chronic, IVR</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>1.1</td>
<td>CHF</td>
<td>0.1</td>
<td>No</td>
<td>Yes</td>
<td>Death</td>
<td>2.7</td>
<td>Yes, NA, NA, NA</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>12.2</td>
<td>Irregular rhythm</td>
<td>0.1</td>
<td>No</td>
<td>Yes</td>
<td>Death</td>
<td>5.6</td>
<td>Yes, NA, NA, NA</td>
</tr>
<tr>
<td>18*</td>
<td>M</td>
<td>5.0</td>
<td>CHF</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA, NA, NA, NA</td>
</tr>
</tbody>
</table>

TX indicates transplantation; NA, not available; CP, chest pain; CHF, congestive heart failure; BBB, bundle-branch block; VF, ventricular fibrillation; VT, ventricular tachycardia; and IVR, idioventricular rhythm.

*Patient 18 was lost to follow-up.

Evidence of Ischemia columns refer to ECG evidence of ST-segment depression, T-wave inversion, Q waves, or a combination; Holter monitor evidence of ST-segment depression; and histopathological evidence of acute or chronic ischemia on autopsy or explantation.

Table 1. Pediatric RCM: Institutional Experience (1967 to 1998)

Figure 3. Holter monitor tracing from 10-year-old girl with RCM and syncope, demonstrating ST-segment depression (arrow) consistent with ongoing ischemia. She died within 5 weeks of diagnosis.
changes with small remote microinfarctions in the left ventricular subendocardium and papillary muscles and only modest vacuolization. None of the 9 hearts available for review had evidence of coronary artery obstruction.

Interpretation

Patient demographics and clinical presentation are compared in Table 2. Statistically significant risk factors for sudden death were (1) female sex, (2) signs and symptoms of ischemia at presentation, (3) absence of heart failure at presentation, and (4) absence of ongoing refractory heart failure.

Statistical significance was not achieved among the remaining risk factors in Table 3, including hemodynamic data, time course to diagnosis or outcome, or laboratory/pathology evidence of ischemia. There were, however, noteworthy correlations. With respect to Holter monitor evidence of ischemia, all 8 studies from both subgroups demonstrated ST-segment depression. Within 8 months of monitoring, 7 of the 8 patients sustained cardiac arrests, and the other patient underwent transplantation without event; all had histopathological evidence of ischemia. ST-segment depression on Holter monitoring, therefore, was used to accurately identify ongoing ischemia and heralded an impending death. With respect to autopsy and explantation data, histopathological evidence of acute ischemia was more frequently identified in the SCD(+) group, whereas more chronic ischemic changes were noted in the SCD(−) group. Sudden death, therefore, appeared to be associated with acute ischemic events.

For all comparisons, the small sample size of the population is likely to have affected statistical significance.

Discussion

Ischemia-mediated cardiac events are common in adults but rare in children. The results of the present study suggest that pediatric patients with RCM represent a population of children who are at risk for ischemia-related complications and death. We had hypothesized that sudden deaths in children with RCM were ischemia mediated. However, it appears that many children with RCM, regardless of mechanism of death, are at risk for ischemia-related complications and death.

Sudden death occurred in 28% of our patients, with an annual mortality rate of 7% (4-year average follow-up time for all patients).
There is a comparable 31% incidence of sudden death in children with hypertrophic cardiomyopathy and a lower incidence of 11% in those with dilated cardiomyopathy.24,25 A lower annual mortality of 4% from sudden death is reported for pediatric hypertrophic cardiomyopathy.25 Among the available case reports and series on pediatric RCM, 10% (4 of 40 patients) had sudden death events. A 7-year-old boy with exertional chest pain died suddenly the day after catheterization, within 3 months of presentation.5 A 6-year-old boy sustained an abrupt syncopal spell associated with ventricular fibrillation and died within 2 months of presentation.19 Their symptoms of ischemia and rapid time to death were similar to those of our study population, but their sex and symptoms of heart failure at presentation were dissimilar. The 2 other patients described were sisters, ages 6 and 16 years, who also died suddenly (no other information); they were members of a 5-generation family with autosomal dominant RCM, atrioventricular block, and skeletal myopathy.14

Patients with RCM, atrioventricular block, skeletal myopathies, and arrhythmias have demonstrated both autosomal dominant and autosomal recessive inheritance patterns; in these patients, desmin inclusions have been isolated by electron microscopy, and in some, missense mutations in the desmin gene have been identified.26 Four patients in this study had a positive family history, although the pattern of transmission cannot be determined. Two patients were identical twins, and 2 were cousins. One of the cousins had a sibling who died of a cardiomyopathy; their parents were cousins. Desmin inclusions were not detected.

Syncope has been an ominous sign in our population, with 3 of 3 patients dying abruptly within months of presentation. Lewis,1 however, reported a female patient with recurrent syncope who survived 11.8 years. Her spells were not arrhythmia related, and ST-segment depression was not noted on a treadmill test, suggesting that her syncope was not ischemia mediated. Gewillig et al4 also reported a female patient with syncopal episodes who survived 11.5 years. Her episodes were secondary to cerebral ischemic attacks due to thromboembolism. These cases and our patients demonstrate that a thorough evaluation of syncope in all patients with RCM is necessary. Ischemia, arrhythmias, and thromboembolism must all be ruled out given the association of these entities with RCM.1–4,14

In the adult population, ischemic myocardium is an established substrate for lethal ventricular arrhythmias.27 In our study population, this same mechanism is documented for pediatric patients. This is demonstrated by the Holter monitor recording of the resuscitated sudden death of patient 5 (Figures 4A and 4B). In these tracings, ST-segment depression is pronounced at faster heart rates, followed by degeneration to torsade de pointes. The association between torsade de pointes and ischemic myocardium is well documented in the adult literature,28 suggesting a mechanism of death in some pediatric patients with RCM who die suddenly and unexpectedly. Children with a more chronic course may also sustain terminal ventricular dysrhythmias, given the presence of ischemic myocardium in these patients as well. Documentation is provided in 3 of the patients with chronic heart failure and ischemic changes (patients 11, 12, and 14). Rhythm

TABLE 3. Risk Factors for SCD in Pediatric RCM: Hemodynamics, Clinical Course, and Evidence of Ischemia

<table>
<thead>
<tr>
<th>Factor</th>
<th>SCD+</th>
<th>SCD−</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDPmax, mm Hg</td>
<td>25.2±2.6</td>
<td>23.6±2.4</td>
<td>0.70</td>
</tr>
<tr>
<td>(n)</td>
<td>(5)</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td>RVEDPmax, mm Hg</td>
<td>13.4±1.3</td>
<td>14.5±1.3</td>
<td>0.63</td>
</tr>
<tr>
<td>(n)</td>
<td>(5)</td>
<td>(12)</td>
<td></td>
</tr>
<tr>
<td>MPAP, mm Hg</td>
<td>25±1.3</td>
<td>33±4.1</td>
<td>0.24</td>
</tr>
<tr>
<td>(n)</td>
<td>(5)</td>
<td>(12)</td>
<td></td>
</tr>
<tr>
<td>PVR index, U · m⁻²</td>
<td>2.4±0.5</td>
<td>6.3±1.8</td>
<td>0.20</td>
</tr>
<tr>
<td>(n)</td>
<td>(5)</td>
<td>(12)</td>
<td></td>
</tr>
<tr>
<td>Time from symptoms to diagnosis, y</td>
<td>0.02±0.04</td>
<td>0.5±0.8</td>
<td>0.07</td>
</tr>
<tr>
<td>(n)</td>
<td>(5)</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td>Time from diagnosis to death/transplantation, y</td>
<td>1.0±0.6</td>
<td>3.1±1.3</td>
<td>0.31</td>
</tr>
<tr>
<td>(n)</td>
<td>(5)</td>
<td>(12)</td>
<td></td>
</tr>
<tr>
<td>ECG evidence of ischemia, %</td>
<td>100</td>
<td>82</td>
<td>0.9</td>
</tr>
<tr>
<td>(available n)</td>
<td>(5)</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td>Holter monitor evidence of ischemia, %</td>
<td>100</td>
<td>100</td>
<td>0.9</td>
</tr>
<tr>
<td>(available n)</td>
<td>(5)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>Acute ischemia on autopsy/explant, %</td>
<td>75</td>
<td>33</td>
<td>0.27</td>
</tr>
<tr>
<td>(available n)</td>
<td>(4)</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>Chronic ischemia on autopsy/explant, %</td>
<td>25</td>
<td>67</td>
<td>0.27</td>
</tr>
<tr>
<td>(available n)</td>
<td>(4)</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>No ischemia on autopsy/explant, %</td>
<td>0</td>
<td>22</td>
<td>0.9</td>
</tr>
<tr>
<td>(available n)</td>
<td>(4)</td>
<td>(9)</td>
<td></td>
</tr>
</tbody>
</table>

P<0.05 is significant.
strips demonstrated ventricular tachycardia, ventricular fibrilla-
tion, or both during resuscitation attempts.

The results of this study suggest that there are identifiable risk
factors for sudden death in this population. Patients who appear
to be at a greater risk include female patients and those who
present with signs and symptoms of ischemia, such as chest pain
and syncope. Patients who appear to be at a lower risk for
sudden death include those with signs and symptoms of heart
failure at presentation and those with ongoing refractory heart
failure. Nevertheless, although this is the largest number of
patients analyzed to date, the patient number remains small,
potentially affecting statistical interpretation.

Optimal medical management is difficult to determine due to
small numbers and variable management approaches during the
past 30 years. Based on the findings of this study, routine
screening for ischemia in all pediatric patients with RCM should
include a baseline ECG and Holter monitoring with digital
ST-segment analysis. Follow-up testing should be performed
approximately every 6 months, with increased frequency dic-
tated by clinical status. Patients with symptoms attributable to
acute myocardial ischemia, such as chest pain or syncope,
warrant immediate evaluation. With respect to medication,
captopril was deleterious in 1 small study, with 4 pediatric
patients with RCM undergoing cardiac catheterization that
demonstrated systemic hypotension without an improvement in
cardiac output.29 β-Blocking agents may be beneficial in the
subset of patients with RCM with clinical evidence of ischemia.
Their anti-ischemic properties and ability to suppress catechol-
amine-provoked arrhythmias have been well documented in
the adult with ischemic heart disease.30 The placement of an
implantable cardioverter-defibrillator has similarly improved
morbidity and mortality rates in the adult with myocardial
ischemia31 and should be considered in patients with RCM who
have clinical evidence of ischemia, particularly with docu-
mented ventricular arrhythmias. Last, immediate cardiac trans-
plantation work-up and listing are warranted. Preferential status
IA or B listing is proposed for pediatric patients with RCM and
is justifiable by several factors. First, these patients are at a high
risk of sudden death; second, survival time is short; and last,
relative preservation of systolic function and potential negative
effects of intraventricular inotropic agents limit the potential of
meeting current criteria for status IA or B listing.

In summary, RCM is a rare but often rapidly lethal disease in
childhood. Clinical evidence of myocardial ischemia may herald
an impending demise. Medical management and preferential
status IA or B listing for cardiac transplantation are
recommended.

References
123:1589–1593.
70:634–640.
in a child: hypertrophic or restrictive cardiomyopathy? Heart Vessels Suppl.
8. Izumi T, Masan F, Mitsumi S, et al. Juvenile cases of restrictive cardiomy-
with restrictive physiology in a child. Heart Vessels Suppl. 1990;5:70–73.
1990;149:856–858.
myopathy with accumulation of intermediate filaments: a clinical, morpho-
14. Fitzpatrick AP, Shapiro LM, Rickards AF, et al. Familial restrictive cardio-
myopathy with atrioventricular block and skeletal myopathy. Br Heart J.
1990;64:114–118.
15. Sapiro DW, Casta A, Swischuk LE, et al. Massive dilatation of the atra and
coronary sinus in a child with restrictive cardiomyopathy and persis-
tence of the left superior vena cava. Cathet Cardiovasc Diagn. 1983;
9:47–53.
an infant with massive biastral enlargement and normal ventricular size and
17. Schieber RA, Lurie PR, Neustein HB. Restrictive cardiomyopathy with
pseudotumor formation of the left ventricle. Pediatr Cardiol. 1982;3:
153–159.
18. Toussaint M, Planche C, Villain E, et al. Restrictive cardiomyopathy in
20. Harris LC, Rodin AE, Ngiemö QX. Idiopathic, nonobstructive cardiomy-
Health Organization/International Society and Federation of Cardiology Task
23. Torp-Pedersen C, Koher L, Elming H, et al. Classification of sudden and
25. Miron B, Heny WE, Clark CE, et al. Asymmetric septal hypertrophy in
associated with familial cardiac and skeletal myopathy. Nat Genet. 1998;19:
402–403.
1999;8:15–17.
of captopril in children with a congestive or restrictive cardiomyopathy.
31. Moss AJ, Hall WJ, Cannom DS, et al. For the Multicenter Automatic Defi-
brillator Trial Investigators. Improved survival with an implanted defibrillator
in patients with coronary disease at high risk for ventricular arrhythmias.
Sudden Death and Cardiovascular Collapse in Children With Restrictive Cardiomyopathy
Shannon M. Rivenes, Debra L. Kearney, E. O'Brian Smith, Jeffrey A. Towbin and Susan W. Denfield

Circulation. 2000;102:876-882
doi: 10.1161/01.CIR.102.8.876

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/102/8/876

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/