Effect of Dietary Patterns on Serum Homocysteine
Results of a Randomized, Controlled Feeding Study

Lawrence J. Appel, MD, MPH; Edgar R. Miller III, MD, PhD; Sun Ha Jee, PhD; Rachael Stolzenberg-Solomon, PhD, MPH, RD; Pao-Hwa Lin, PhD; Thomas Erlinger, MD, MPH; Marie R. Nadeau, MS; Jacob Selhub, PhD

Background—Elevated blood levels of homocysteine are associated with an increased risk of atherosclerotic cardiovascular disease. Although numerous studies have assessed the impact of vitamin supplements on homocysteine, the effect of dietary patterns on homocysteine has not been well studied.

Methods and Results—During a 3-week run-in, 118 participants were fed a control diet, low in fruits, vegetables, and dairy products, with a fat content typical of US consumption. During an 8-week intervention phase, participants were then fed 1 of 3 randomly assigned diets: the control diet, a diet rich in fruits and vegetables but otherwise similar to control, or a combination diet rich in fruits, vegetables, and low-fat dairy products and reduced in saturated and total fat. Between the end of run-in and intervention periods, mean change in homocysteine was +0.46 μmol/L in the control diet, +0.21 μmol/L in the fruits and vegetables diet (P = 0.47 compared with control), and −0.34 μmol/L in the combination diet (P = 0.03 compared with control, P = 0.12 compared with the fruits and vegetables diet). In multivariable regression models, change in homocysteine was significantly and inversely associated with change in serum folate (P = 0.03) but not with change in serum vitamin B12 (P = 0.64) or pyridoxal 5’ phosphate, the coenzyme form of vitamin B6 (P = 0.83).

Conclusions—Modification of dietary patterns can have substantial effects on fasting levels of total serum homocysteine.

These results provide additional insights into the mechanisms by which diet might influence the occurrence of atherosclerotic cardiovascular disease. (Circulation. 2000;102:852-857.)

Key Words: nutrition ▪ risk factors ▪ metabolism

A substantial body of evidence from observational epidemiological studies suggests that homocysteine is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). In 1969, McCully1 first proposed the homocysteine theory of atherosclerosis. He postulated that homocysteine was responsible for the severe atherosclerosis observed in 2 distinct genetic conditions, that is, a rare disorder of vitamin B12 metabolism and classic homocystinuria from homozygous cystathionine β-synthase deficiency. Since then, >30 observational studies have reported a direct relation between blood levels of homocysteine and ASCVD, including coronary heart disease, cerebrovascular disease, and peripheral vascular disease.2 The relation is progressive and graded through ranges of homocysteine previously considered low or normal.3-7

Among the factors known to influence homocysteine metabolism are several nutrients, including folate, vitamin B6, and vitamin B12. Homocysteine can be remethylated to methionine by methionine synthase in a reaction that requires methyltetrahydrofolate as a methyl donor and vitamin B12 as an enzyme cofactor.8 Alternatively, homocysteine can be transsulfurated to cysteine in reactions that require vitamin B6.9 These results provide additional insights into the mechanisms by which diet might influence the occurrence of atherosclerotic cardiovascular disease. (Circulation. 2000;102:852-857.)

Key Words: nutrition ▪ risk factors ▪ metabolism

Received December 21, 1999; revision received March 4, 2000; accepted March 20, 2000.

From Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Md (L.J.A., E.R.M., T.E.); the Department of Epidemiology and Disease Control, Graduate School of Health Science and Management, Yonsei University, Seoul, Korea (S.H.J.); Cancer Prevention Studies Branch, National Cancer Institute, Bethesda, Md (R.S.-S.); Sarah W. Stedman Center for Nutritional Studies, Duke University Medical Center, Durham, NC (P.-H.L.); and the US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, Mass (M.R.N., J.S.).

Correspondence to Lawrence J. Appel, MD, MPH, Johns Hopkins University, 2024 E Monument St, Suite 2-645, Baltimore, MD 21205-2223. E-mail lappel@welch.jhu.edu

© 2000 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org
bioavailability, the effects of vitamins derived from food should be different from that of high-dose vitamin supplements. For instance, it is well recognized that folic acid from vitamin supplements is better absorbed than dietary folate.14

Current dietary guidelines recommend increased consumption of fruits, vegetables, and low-fat dairy products (often milk, consumed with breakfast cereals).15 Unanticipated benefits of these diet recommendations may be an increase in folate, vitamin B6, and vitamin B12 intake and consequently a reduction in homocysteine, which could potentially lower the risk of ASCVD. Cross-sectional analyses from the Framingham Heart Study indicate that frequent consumption of certain foods, particularly, fruits, vegetables, and cereals, is correlated with low plasma levels of homocysteine,16 perhaps as a result of the high folate intake content of these foods. Nonetheless, inferences about causality must be made cautiously because of the potential for residual and uncontrolled confounding from other nutrients and nonnutritional factors.17 One controlled feeding study conducted in a metabolic ward suggested that folate-deficient diets may raise homocysteine, but the diets were unusual because of the artificially low intake of folate, just 25 and 90 µg/d.18

The objective of this study was to describe the effect of specific dietary patterns on fasting levels of total serum homocysteine in the setting of a randomized, controlled feeding study.

Methods
This research was an ancillary study in the Dietary Approaches to Stop Hypertension (DASH) trial, a multicenter trial designed to assess the effects of dietary patterns on blood pressure. This ancillary study, which was conducted at the DASH clinical center at Johns Hopkins, involved only the coauthors rather than the entire DASH collaborative group. Detailed descriptions of the design and methods of DASH19 and of its recruitment procedures20 and main results21 have been published. A local institutional review board approved the trial protocol. Each participant provided written informed consent.

Participants
Trial participants were adults (age ≥22 years) who were not taking antihypertensive medication and who had an average systolic blood pressure <160 mm Hg and average diastolic blood pressure of 80 to 95 mm Hg. Major exclusion criteria were poorly controlled diabetes; hyperlipidemia; cardiovascular event within 6 months; unwillingness to stop all vitamin and mineral supplements; use of medications that affect blood pressure; >14 alcoholic drinks per week; and a glomerular filtration rate of <50 mL/min (as estimated by the Cockroft Gault formula). Participants were enrolled sequentially into groups. The first group began controlled feeding in September 1994. The last group ended feeding in April 1996, before routine fortification of food with folic acid.

Trial Conduct
After a screening period, eligible and interested participants began a 3-week run-in period in which they ate the control diet. During the third week, individuals were randomly assigned to 1 of 3 diets. For the next 8 weeks, participants ate their randomly assigned diets. During the last week of run-in and intervention, specimens of serum were obtained after overnight fasts. Each specimen was collected at room temperature, allowed to clot over 15 minutes, centrifuged at 2000g for 15 minutes at 4°C, and then placed in storage at −70°C until July 1996, when analyses were performed. Staff blinded to diet assignment collected all follow-up data.

Dietary Patterns
The control diet was relatively low in fruits, vegetables, and dairy products, with a fat content typical of US consumption. A second diet was rich in fruits and vegetables but otherwise similar to the control diet. The combination diet emphasized fruits, vegetables, and low-fat dairy products. It included whole grains, poultry, fish, and nuts, and was reduced in fat, red meat, sweets, and sugar-containing beverages.22

For the 2600-kcal level of the 3 diets, Table 1 displays the macronutrient profile and the content of folate, vitamin B6, and vitamin B12, as estimated from database analyses of the menus using Moore’s Extended Nutrient System (MENu, Pennington Biomedical Research Center, Baton Rouge, La); the folate and vitamin B12 content as estimated from chemical analyses of composited meals; and the average number of servings per day of selected food groups. For the nutrient estimates derived from meal composites, a full week cycle of meals at each of 4 calorie levels was composited, stored, and then analyzed for folate and vitamin B12. For each diet and nutrient, a standard curve was generated from which the predicted value at 2600 kcal was estimated.

Controlled Feeding
On each weekday of the 11-week feeding period, participants ate either lunch or dinner at the clinical center. After completing the on-site meal, participants received coolers that contained the other meals to be consumed off-site. On Fridays, they also received their weekend meals, all consumed off-site. Self-report of perfect adher-
ence (no nonstudy foods consumed and all study foods eaten) occurred in 96%, 96%, and 94% of person-days in those assigned to the control, fruits and vegetables, and combination diets.

A 7-day menu cycle with 21 meals at 4 calorie levels (1600, 2100, 2600, and 3100 kcal) was developed for each diet. Food was prepared in metabolic kitchens, primarily at the Beltsville Human Nutrition Research Center of the US Department of Agriculture, and then served at the Hopkins clinical center. Weight was measured each weekday and was kept stable by adjusting calorie intake.

Laboratory Assays

Total serum homocysteine (free and protein bound) was determined by high-performance liquid chromatography according to the method of Araki and Sako23; the between-run coefficient of variation (CV) for this assay was 8%. Serum folate and vitamin B₁₂ were measured by radioimmune assay with the use of a kit from Bio-Rad; the between-run CV for this assay was 8%. Serum folate and vitamin B₁₂ were simultaneously entered changes in folate, PLP, and vitamin B₁₂. To assess the independent association of change in homocysteine with changes in folate, PLP, and vitamin B₁₂, we simultaneously entered changes in folate, PLP, and vitamin B₁₂ in a multivariable regression model. Analyses were performed with the use of Stata 6.0 and SAS 6.12 software.

Results

Of the 135 who started run-in, 124 (92%) were randomized. Paired specimens of serum, collected at the end of run-in and intervention periods, were available in 118 persons (95% of randomized participants), all of whom completed the 11 weeks of controlled feeding. As displayed in Table 2, participants tended to be middle-aged (median age of 49 years, range 23 to 76 years). Approximately half were women, and two thirds came from a minority background, predominantly black. Before feeding, median folate intake was 313 µg/d, and few individuals (<20%) were users of multivitamins or B-complex vitamin supplements.

Effects of Dietary Patterns on Serum Folate, PLP, and Vitamin B₁₂

Figures 1, 2, and 3 display mean (95% CI) changes in serum folate, PLP, and vitamin B₁₂ between the end of run-in and intervention after adjustment for run-in levels. Mean change in serum folate was −0.80 µg/L in the control group, +0.10

Statistical Considerations

Change in fasting levels of total serum homocysteine between the end of run-in and intervention periods was the primary outcome variable. The target sample size of 114 at the Hopkins clinical center was estimated to provide 80% power to detect a mean between-diet difference of 2 µmol/L in homocysteine. Analyses were performed on an intention-to-treat basis. For each outcome variable, run-in changes and changes from run-in tended to be normally distributed; however, several outliers were present. To minimize the potential influence of these outliers, we displayed baseline data as medians with interquartile ranges and used robust regression analyses to test for differences between randomized groups. In each regression model, the dependent variable was change from end of run-in to end of intervention. Covariates in each model were the run-in level of the dependent variable as well as 2 indicator variables corresponding to diet assignment. Trends across the 3 diets (control, fruits and vegetables, and combination) were tested in separate models by entering an ordinal variable (0, 1, 2) corresponding to these 3 diets. To explore the potential influence of nutrients that affect homocysteine metabolism, we calculated Spearman correlations between homocysteine and levels of folate, PLP, and vitamin B₁₂ at end of run-in and intervention, and between changes in homocysteine and changes in folate, PLP, and vitamin B₁₂. To assess the independent association of change in homocysteine with changes in folate, PLP, and vitamin B₁₂, we simultaneously entered changes in folate, PLP, and vitamin B₁₂ in a multivariable regression model. Analyses were performed with the use of Stata 6.0 and SAS 6.12 software.

Table 2. Characteristics of Trial Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control (n = 39)</th>
<th>Fruits and Vegetables (n = 41)</th>
<th>Combination (n = 38)</th>
<th>All (n = 118)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>50 (40, 58)</td>
<td>49 (45, 56)</td>
<td>48.5 (39, 54)</td>
<td>49 (40, 56)</td>
</tr>
<tr>
<td>% Women</td>
<td>51.3%</td>
<td>43.9%</td>
<td>50%</td>
<td>48.3%</td>
</tr>
<tr>
<td>% Minority</td>
<td>66.7%</td>
<td>63.4%</td>
<td>71.1%</td>
<td>67.0%</td>
</tr>
<tr>
<td>% Current smokers</td>
<td>12.8%</td>
<td>9.8%</td>
<td>13.2%</td>
<td>11.9%</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>133.1 (126.0, 144.3)</td>
<td>136.1 (128.9, 143.3)</td>
<td>130.6 (125.4, 139.7)</td>
<td>133.2 (127.0, 141.3)</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>87.0 (82.7, 88.4)</td>
<td>85.9 (82.4, 89.4)</td>
<td>83.5 (81.1, 87.0)</td>
<td>85.1 (82.3, 88.4)</td>
</tr>
<tr>
<td>Creatinine, mg/dL</td>
<td>1.0 (0.9, 1.1)</td>
<td>1.1 (1.0, 1.2)</td>
<td>1.0 (0.9, 1.1)</td>
<td>1.0 (0.9, 1.2)</td>
</tr>
<tr>
<td>Vitamin use†</td>
<td>17.9%</td>
<td>12.2%</td>
<td>23.7%</td>
<td>17.8%</td>
</tr>
<tr>
<td>Folate intake‡</td>
<td>314 (228, 406)</td>
<td>319 (226, 438)</td>
<td>304 (254, 446)</td>
<td>313 (251, 446)</td>
</tr>
<tr>
<td>Vitamin B₁₂ intake‡</td>
<td>2.0 (1.4, 2.6)</td>
<td>1.8 (1.4, 2.5)</td>
<td>1.8 (1.5, 2.5)</td>
<td>1.8 (1.4, 2.5)</td>
</tr>
<tr>
<td>Run-in serum level of Homocysteine, µmol/L</td>
<td>8.93 (6.78, 11.24)</td>
<td>9.29 (7.89, 12.37)</td>
<td>9.34 (6.80, 12.09)</td>
<td>9.23 (7.32, 11.95)</td>
</tr>
<tr>
<td>Folate, µg/L</td>
<td>4.51 (3.72, 6.20)</td>
<td>5.32 (3.87, 7.37)</td>
<td>5.72 (4.00, 6.71)</td>
<td>5.09 (3.87, 6.81)</td>
</tr>
<tr>
<td>PLP, nmol/L</td>
<td>41.6 (32.0, 60.0)</td>
<td>41.5 (35.2, 63.9)</td>
<td>42.2 (32.4, 52.4)</td>
<td>41.5 (33.0, 59.6)</td>
</tr>
<tr>
<td>Vitamin B₁₂, ng/L</td>
<td>392 (250, 453)</td>
<td>436 (361, 508)</td>
<td>430 (343, 520)</td>
<td>423 (350, 508)</td>
</tr>
</tbody>
</table>

*Continuous data are presented as median (first quartile, third quartile).
†Prestudy use of multivitamins or B-complex vitamin supplements.
‡From a food frequency questionnaire completed before run-in (control, n = 34; fruits and vegetables, n = 36; combination, n = 37; all, n = 107).
μg/L in the fruits and vegetables group (P<0.001 compared with control), and +0.63 μg/L in the combination group (P<0.001 compared with control, P=0.04 compared with fruits and vegetables). For serum PLP, mean change was −2.8 mmol/L in the control group, +8.4 mmol/L in the fruits and vegetables group (P<0.001 compared with control), and +4.3 mmol/L in the combination group (P=0.03 compared with control, P=0.19 compared with fruits and vegetables). Mean change in vitamin B₁₂ was −16 ng/L in the control group, −13 ng/L in the fruits and vegetables group (P=0.81 compared with control), and 8.0 ng/L in the combination group (P=0.08 compared with control, P=0.12 compared with fruits and vegetables).

Homocysteine
As displayed in Figure 4, mean within-group change in homocysteine, after adjustment for run-in level, was +0.46 μmol/L (95% CI −0.04, +0.96) in the control group, +0.21 μmol/L (95% CI −0.27, +0.69) in the fruits and vegetables group, and −0.34 μmol/L (95% CI −0.84, +0.16) in combination group. Between-diet differences were −0.8 μmol/L (95% CI −1.51, −0.1; P=0.03) comparing control and combination groups, −0.25 μmol/L (95% CI −0.94, 0.44; P=0.47) comparing the control group and the fruits and vegetables group, and −0.55 μmol/L (95% CI −1.24, 0.15; P=0.12) comparing the fruits and vegetables group and the combination group. Across the 3 diets, there was a progressive reduction in homocysteine (P for trend=0.02).

Correlates of Homocysteine
At the end of run-in, serum homocysteine was significantly and inversely correlated with serum folate (r=−0.54, P=0.0001) and vitamin B₁₂ (r=−0.34, P=0.0002) but not PLP (r=−0.06, P=0.54). An identical pattern of findings was present in analyses correlating end-of-intervention homocysteine with end-of-intervention serum nutrients. However, in analyses correlating change in homocysteine with changes in nutrients, change in homocysteine was associated with change in serum folate (r=−0.28, P=0.002) but not with change in PLP (r=−0.02, P=0.79) or vitamin B₁₂ (r=−0.12, P=0.21). In regression analyses that simultaneously adjusted for changes in serum folate, PLP, and vitamin B₁₂ and for run-in level of homocysteine, change in serum homocysteine was only associated with change in folate (Table 3).

Discussion
This trial demonstrated that modification of dietary patterns can have substantial effects on fasting levels of serum folate (Figure 1) and vitamin B₁₂ (Figure 2) and homocysteine (Figure 3). The results suggest that dietary changes that increase folate and vitamin B₁₂ intake may reduce fasting levels of these nutrients and homocysteine. These findings add to the growing body of evidence supporting the role of dietary interventions in the management of homocysteine levels.
homocysteine. Specifically, in a population of individuals with high normal blood pressure or stage 1 hypertension, a control diet that was relatively low in fruits, vegetables, and dairy products with a fat content typical of US consumption raised homocysteine. In contrast, the DASH combination diet that was diet rich in fruits, vegetables, and low-fat dairy products and reduced in saturated and total fat lowered homocysteine. A diet rich in fruits and vegetables but otherwise similar to the control diet had an intermediate effect. Recent data suggest that a 3- to 4-μmol/L reduction in homocysteine should lower vascular disease risk by one third. If homocysteine proves to be an independent ASCVD risk factor, then the observed 0.8-μmol/L difference in homocysteine between control diet and combination diets should lower ASCVD risk by 7% to 9% among persons consuming a typical American diet who subsequently adopt the DASH combination diet.

Among the strengths of this study are high internal and external validity. Follow-up data were collected in 95% of randomized participants. Furthermore, adherence was excellent as indicated by self-reports of food consumption, by changes in serum levels of nutrients (documented in this ancillary study), and by changes in the urinary excretion of electrolytes (documented in the overall trial). We attribute much of our successful follow-up and adherence to the 3-week run-in period that preceded randomization. Also, the study population was demographically heterogeneous. Nearly half of trial participants were women, two thirds were from a minority background, and the age range was broad. In addition, the median level of fasting homocysteine in this trial was similar to corresponding data from a large national survey. Finally, the combination diet was broadly consistent with national dietary recommendations.

Potential limitations of this trial include the duration of feeding (11 weeks), the relatively small sample size (118 persons allocated across 3 groups), and the potential influence of prestudy diets of participants on trial results. On the basis of data from a food frequency questionnaire, prestudy folate intake was >300 μg/d. In the control group, which received a diet with <250 μg/d folate, homocysteine rose between run-in and intervention despite the fact that this group remained on the same diet. One explanation for this finding pertains to the timing of specimen collection; baseline specimens were drawn after just 3 weeks of run-in feeding, a period at which vitamin stores and homocysteine may still have reflected, to some extent, the prestudy dietary intake of participants. The observation that serum folate fell between run-in and intervention in the control group supports the notion that participants had not reached a steady state, at least with respect to folate balance by the end of run-in.

Several aspects of the diets might explain the observed changes in homocysteine, including the gradient across diets. First, dietary folate increased progressively across the diets, with the lowest intake in the control diet and the highest in the combination diet. In exploratory analyses, change in serum folate was significantly and independently correlated with change in homocysteine; no other nutrient was correlated with homocysteine change. Folate-rich foods that might have contributed to the reductions in homocysteine observed in the combination diet include fruits, juices, vegetables, and perhaps dairy products.

Vitamin B12 may also have had a beneficial effect on fasting levels of homocysteine. The combination diet provided more vitamin B12 than either the control diet or the fruits and vegetables diet. Serum vitamin B12 was significantly correlated with homocysteine at the end of both run-in and intervention. However, change in homocysteine was not significantly associated with change in serum vitamin B12. The absence of a relation between change in serum vitamin B12 and change in homocysteine may have resulted from the fact that serum vitamin B12 levels changed minimally over the 8-week intervention period.

Overall, our data suggest that dietary folate intake had a major influence on fasting levels of homocysteine and that vitamin B12 may also have had an effect. Such findings are consistent with the known metabolism of homocysteine, with cross-sectional analyses of observational studies, and with clinical trials of vitamin supplements. Nonetheless, the trial was designed to test the effects of whole dietary patterns rather than the effects of individual nutrients. The associations of folate and homocysteine, albeit robust, could be distorted (either artificially increased or diminished) from the effects of correlated nutrients, such as vitamin B12, which also affect homocysteine levels. Furthermore, in addition to the well-known determinants of fasting homocysteine, the diets differed in several other aspects, for example, protein intake, which might influence homocysteine metabolism.

Results of this trial may help to explain the beneficial effects of certain dietary patterns, such as vegetarian diets, which are associated with a reduced risk of ischemic heart disease and stroke. Although the nutrients responsible for such effects are uncertain, attention has focused on reduced consumption of certain nutrients, such as saturated fat, and increased consumption of potassium, fiber, and naturally occurring antioxidants, such as β-carotene and lycopene. Results from this study suggest that another mechanism, namely, a reduction in homocysteine, may in part be responsible for the beneficial effects of these diets, many of which are excellent sources of folate.

In summary, modification of dietary patterns can have substantial effects on fasting levels of total serum homocysteine. These results provide additional insights into the mechanisms by which diet might influence the occurrence of atherosclerotic cardiovascular disease.
Acknowledgments
This study was supported by grants HL-50981 and HL-02642 from the National Heart, Lung, and Blood Institute; grant RR-00722 from the National Center for Research Resources, National Institutes of Health; and contract 53-3K06-01 from the Agricultural Research Service, US Department of Agriculture. We are extraordinarily appreciative of trial participants and of the entire DASH Collaborative Research Group.

References
Effect of Dietary Patterns on Serum Homocysteine: Results of a Randomized, Controlled Feeding Study

Lawrence J. Appel, Edgar R. Miller III, Sun Ha Jee, Rachael Stolzenberg-Solomon, RD, Pao-Hwa Lin, Thomas Erlinger, Marie R. Nadeau and Jacob Selhub

Circulation. 2000;102:852-857
doi: 10.1161/01.CIR.102.8.852

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/102/8/852

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/