Diagnostic Marker Cooperative Study for the Diagnosis of Myocardial Infarction

To the Editor:

Zimmerman et al\(^1\) report a multicenter study of the predictive power of biochemical markers for a diagnosis of myocardial infarction (MI) in 955 patients presenting with chest pain. MI diagnosis was based on creatine kinase (CK)-MB mass (7 ng/mL) and CK-MB index (2.5%) within 24 hours after emergency department arrival. Markers included CK-MB subforms, myoglobin, troponin T, troponin I, total CK-MB activity, and total CK-MB mass. Sensitivity and specificity are illustrated for hours 2, 4, 6, 10, 14, 18, and 22 after symptom onset. The authors report that CK-MB subforms, followed by myoglobin, were the most sensitive and specific for early diagnosis (ie, within 6 hours); they conclude that in the selection of a single assay, CK-MB subforms provide the earliest diagnosis.

A review of the data (Table 2) confirms that the sensitivity for CK-MB subforms or myoglobin is significantly higher than other markers at 2, 4, and 6 hours. However, contrary to the authors’ statement, the specificity for CK-MB subforms and myoglobin is significantly less ($P<0.01$) than for troponin I, troponin T, CK-MB activity, and CK-MB mass at these hours. The reporting of sensitivity and specificity alone does not yield estimates of the positive (rule-in) and negative (rule-out) predictive power of the markers. Calculations of positive predictive value ($+PV$) and negative predictive value ($-PV$) provide such estimates as follows:

$$+PV = \frac{Se \times 12.5}{Se \times 12.5 + (100 - Sp) \times 87.5 \times 100}$$

$$-PV = \frac{Sp \times 87.5}{Sp \times 87.5 + (100 - Se) \times 12.5 \times 100}$$

where 12.5 is the population frequency of MI in percent and 87.5 is its complement. Se indicates sensitivity and Sp, specificity.

The predictive values yield the following observations: (1) $+PV$ at hours 2, 4, and 6 for troponins I and T, CK-MB activity, and CK-MB mass is greater ($P<0.01$) than that for CK-MB subforms and myoglobin; (2) $-PV$ at 2 and 4 hours for the CK subforms is not significantly different from the other markers; and (3) $-PV$ of the CK-MB subforms at 6 hours is significantly higher than that of all other markers ($P<0.01$).

By predictive value analysis, CK-MB subforms have no greater early rule-in power for MI than troponins T and I, CK-MB activity, and CK-MB mass; CK-MB subforms have the highest rule-out power only at the sixth hour after chest pain onset.

Arnold M. Weissler, MD
Department of Medicine
Mayo Medical School
Rochester, Minnesota

Diagnostic Marker Cooperative Study for the Diagnosis of Myocardial Infarction
Arnold M. Weissler

Circulation. 2000;102:e40
doi: 10.1161/01.CIR.102.6.e40

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/102/6/e40

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/