Late Breaking Science: Linking Genes to Function in the Heart and Vasculature

CLINICAL ABSTRACTS

Contents

Results of the Treat Angina With Aggrastat and Determine the Cost of Therapy With an Invasive or Conservative Strategy (TACTICS-TIMI 18) Trial: A Comparison of Invasive Versus Conservative Strategy in Patients With Unstable Angina and Non–ST-Segment Elevation Myocardial Infarction

Christopher P. Cannon, William S. Weintraub, Laura Demopoulos, Debbie Robertson, Paul DeLucca, Carolyn H. McCabe, Eugene Braunwald, Brigham and Women’s Hospital, Boston MA

Background: In the treatment of patients with unstable angina and non-ST-segment elevation myocardial infarction (UA/NSTEMI), debate exists as to whether an early invasive vs. a conservative strategy is optimal therapy. Methods: In the international TACTICS-TIMI 18 trial, 2220 patients with UA/NSTEMI who had either electrocardiographic changes, elevated cardiac markers or a history of prior coronary artery disease, were immediately treated with aspirin, heparin and the glycoprotein (GP) IIb/IIIa inhibitor tirofiban. They were randomized to an early invasive strategy with routine catheterization and revascularization as appropriate within 4–48 hours, or to a conservative, “selective invasive” strategy, with catheterization performed only if the patient had objective evidence of recurrent ischemia or a positive stress test. The primary endpoint was a composite of death, myocardial infarction or rehospitalization for acute coronary syndromes at 6 months. Results: The rate of the primary endpoint was significantly reduced with the invasive strategy compared to the conservative strategy, 15.9% vs. 19.4%, odds ratio (OR) 0.78, p = 0.025. The rate of death or MI at 6 months was also significantly reduced (9.5% vs. 7.3% respectively, OR 0.74, p = 0.005). Conclusion: In patients with UA/NSTEMI treated with the GP IIb/IIIa inhibitor tirofiban, an early invasive strategy resulted in a significant reduction in major cardiac events. These data suggest a need to update the ACC/AHA Unstable angina guidelines, and to modify the clinical approach to managing unstable angina with a broader use of an early invasive strategy with upstream GP IIb/IIIa inhibition.

Effect of the Angiotensin Receptor Blocker Valsartan on Morbidity and Mortality in Heart Failure: the Valsartan Heart Failure Trial (Val-HeFT)

Jay N. Cohn and Gianni Tognoni for the Val-HeFT Investigators, Minneapolis, Minnesota and Milan, Italy

In order to assess the efficacy of the angiotensin receptor blocker valsartan in the treatment of heart failure (HF), 5010 patients were studied in 16 countries on 4 continents. Patients with chronic HF (NYHA II (62%), III (36%) and IV (2%), ejection fraction (EF) <40% and left ventricular diastolic transverse diameter (LVDD) >2.9 cm/m2 were randomly assigned to receive placebo (P) or valsartan (V) (titrated to 160 mg ID) in addition to all other appropriate therapy including ACE inhibitors (93%), beta blockers (68%), diuretics (88%) and digoxin (67%). Primary end-points were all-cause mortality (M) and mortality plus morbidity (M plus M). Included were 540 patients (83% male, age 61 ± 11 yrs) with an acute myocardial infarction (43% anterior) and a cholesterol value <6.5 mmol/L (mean 5.4 ± 0.7). AECG were performed during admission for MI, after 6 and 12 weeks. Fluvastatin 60 mg/day or placebo were administered during admission and for one year. Events were adjudicated by a blinded monitoring committee. After 12 months treatment, fluvastatin lowered LDL cholesterol from 3.5 to 2.7 mmol/L and placebo to 3.6 to 3.9 mmol/L (p <0.001). At baseline, 6 weeks and 12 months ischemia on AECG was present in 12%, 8% and 6% of the patients on fluvastatin and in 13%, 6% and 10% of the patients on placebo (p=ns). On fluvastatin the ischemic burden (ischemia) was 13.4 ± 5.2 and in placebo 16.6 ± 5.3, ± 3.1 & ± 1 min/mn (p=ns). After 12 months, MAEC and residual AECG ischemia occurred in 30% of fluvastatin patients and in 36% of placebo patients (p=ns). For this combined endpoint, ischemia at baseline was highly predictive (OR 2.92, 95% CI 1.61–5.29, p < 0.0004). One-year mortality was 2.6% on fluvastatin and 4.0% on placebo (p <0.05). A trend toward a beneficial effect of fluvastatin on MACE was observed, cardiac arrest with severe ischemia at baseline (p=0.08). Conclusion: Post-MI ischemia on AECG was highly predictive for adverse outcome after one year. Fluvastatin had no beneficial effect on post-MI ischemia after 6 weeks or 12 months. Although not powered for this purpose, this study showed no effect of fluvastatin on MACE. A positive trend through, was observed in patients with severe ischemia at baseline.

The Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Trial: Effects of Intensive Atorvastatin Treatment on Early Recurrent Events After an Acute Coronary Syndrome

Gregory G. Schwartz, Anders G. Olsson, Michael D. Ezekowitz, Peter Ganz, Michael F. Oliver, David Waters, Andreas Zeiher, Bernard Chaitman, Sally Leslie, and Theresa Stern for the MIRACL Investigators

Background: Previous trials have demonstrated that treatment with conventional doses of statins, initiated in patients with stable coronary heart disease, reduces death and non-fatal ischemic events over periods of years. The Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) trial tested the hypothesis that intensive treatment with atorvastatin, initiated immediately after an acute coronary syndrome, reduces death and non-fatal ischemic events in the ensuing 16 weeks. Methods: We conducted a randomized, double-blind trial comparing atorvastatin (80 mg daily) with placebo in 3086 patients with unstable angina or non-Q-wave acute myocardial infarction. Treatment was initiated 24 to 96 hours after hospitalization and continued for 16 weeks. The primary combined endpoint was death, non-fatal acute myocardial infarction, cardiac arrest with resuscitation, or worsening angina with new objective evidence of ischemia requiring emergency rehospitalization, analyzed by time to first event. Secondary endpoints included the components of the primary endpoint as well as stroke, coronary revascularization, worsening congestive heart failure, and worsening angina without new objective evidence of ischemia. Results: A primary endpoint event occurred in 228 patients in the atorvastatin group (14.8%) and 269 patients in the placebo group (17.4%) (relative risk 0.84; 95% confidence interval 0.70 to 1.00; P = 0.048). The greatest effect of atorvastatin was on worsening angina with new objective evidence of ischemia requiring emergency rehospitalization (relative risk 0.74; 95% confidence interval 0.57 to 0.95; P = 0.02). Death, non-fatal myocardial infarction, and cardiac arrest were less frequent in the atorvastatin group than in the placebo group, but the differences were not statistically significant. Of the other secondary endpoints, there were significantly fewer strokes in the atorvastatin group than in the placebo group (12 versus 24 events). In the atorvastatin group, mean LDL cholesterol declined from 123 to 72 mg/dl (3.2 to 1.9 mmol/L). Abnormal liver transaminases (>3 times upper limit of normal) occurred in 2.5% and 0.6% of patients in atorvastatin and placebo groups, respectively. Conclusion: Early, intensive lipid-lowering with atorvastatin reduces recurrent ischemic events in the first 16 weeks after an acute coronary syndrome.
Results of the Treat Angina With Aggrastat and Determine the Cost of Therapy With an Invasive or Conservative Strategy (TACTICS-TIMI 18) Trial: A Comparison of Invasive Versus Conservative Strategy in Patients With Unstable Angina and Non–ST-Segment Elevation Myocardial Infarction

Christopher P. Cannon, William S. Weintraub, Laura Demopoulos, Debbie Robertson, Paul DeLucca, Carolyn H. McCabe and Eugene Braunwald

_Circulation_. 2000;102:2672
doi: 10.1161/01.CIR.102.21.2672-a

_Circulation_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/102/21/2672.1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/