Homozygous Mutation in Cardiac Troponin T
Implications for Hypertrophic Cardiomyopathy

Carolyn Y. Ho, MD; Harry M. Lever, MD; Roman DeSanctis, MD; Carol F. Farver, MD; J.G. Seidman, PhD; Christine E. Seidman, MD

Background—Mutations in the gene that encode cardiac troponin T (cTnT) account for \(\approx 15\% \) of cases of familial hypertrophic cardiomyopathy (HCM). These mutations are associated with a particularly severe form of HCM characterized by a high incidence of sudden death and a poor overall prognosis, despite subclinical or mild left ventricular hypertrophy.

Methods and Results—We evaluated a family with HCM and multiple occurrences of sudden death in children. DNA samples were isolated from peripheral blood or paraffin-embedded tissue, and all protein-encoding exons of the cTnT gene were sequenced. A mutation was identified in exon 11 and is predicted to substitute a phenylalanine-for-serine mutation at residue 179 (Ser\(^{179}\) Phe) in cTnT. Both parents and 3 of 4 surviving and clinically unaffected children were heterozygous for this mutation; another clinically unaffected child did not carry the mutation. Genetic analysis of DNA from a child who died suddenly at age 17 years demonstrated he was homozygous for this mutation. A review of his echocardiogram revealed profound left and right ventricular hypertrophy.

Conclusions—An homozygous Ser\(^{179}\) Phe mutation in cTnT causes a severe form of HCM characterized by striking morphological abnormalities and juvenile lethality. In contrast, the natural history of the heterozygous mutation is benign. These studies emphasize the relevance of genetic diagnosis in hypertrophic cardiomyopathy and provide a new perspective on the clinical consequences of troponin T mutations. (Circulation. 2000;102:1950-1955.)

Key Words: cardiomyopathy \(\blacklozenge \) cardiac troponin T \(\blacklozenge \) genetics

Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder caused by mutations in genes that encode sarcomere proteins, including cardiac β-myosin heavy chain, α-tropomyosin, cardiac troponin T (cTnT), cardiac myosin-binding protein C, cardiac troponin I, and cardiac myosin regulatory and essential light chains.\(^1-5\) In addition to this genetic diversity, the phenotypic expression of these mutations varies considerably, ranging from asymptomatic individuals with a normal life expectancy to those with sudden cardiac death or need for early heart transplantation. Clinical parameters such as degree of the left ventricular hypertrophy, the presence or absence of a left ventricular outflow tract gradient, and electrophysiology testing have not been predictive markers of poor prognosis.\(^5-8\) In contrast, there has been a more consistent relationship between certain genetic mutations and clinical outcome, allowing for the classification of “benign” and “malignant” mutations.\(^7-12\) This underscores the importance of genetic analysis and the potential role of genotype determination in assisting with patient management.

Mutations of cTnT are thought to account for \(\approx 15\% \) of familial HCM\(^7\) and are associated with a particularly severe form of disease characterized by a poor overall prognosis with a high incidence of sudden death despite only mild left ventricular hypertrophy.\(^6,7\) However, this association is based on limited experience; to date, only 11 different mutations have been identified.\(^2,7,13-15\) The identification and evaluation of families with cTnT mutations may be of particular importance to increase our understanding of the pathophysiology of severe forms of HCM. Furthermore, these data may provide greater information about the structure and function of this sarcomere protein.

We identified a family with HCM and multiple episodes of sudden death in children. Direct sequence analysis of the cTnT gene was performed to define the disease-causing mutation in this family. Identification of a novel mutation provided unique insights into a particularly malignant form of HCM. These insights both influence patient management and expand current understanding of the clinical nature of cTnT mutations in this disorder.

Methods

Clinical Evaluation

After informed consent was obtained in accordance with the guidelines of the Brigham and Women’s Hospital Human Subjects

Received April 21, 2000; revision received May 31, 2000; accepted May 31, 2000.
From the Cardiovascular Division (C.Y.H., C.E.S.), Brigham and Women’s Hospital, Harvard Medical School and Howard Hughes Medical Institute, Boston, Mass; The Cleveland Clinic Foundation (H.M.L., C.F.F.), Cleveland, Ohio; Cardiac Unit (R.D.), Massachusetts General Hospital, Boston, Mass; and Department of Genetics and Howard Hughes Medical Institute (J.G.S.), Harvard Medical School, Boston, Mass.
Correspondence to Christine E. Seidman, MD, Department of Genetics, Alpert Building, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115. E-mail cseidman@rascal.med.harvard.edu
© 2000 American Heart Association, Inc.
Circulation is available at http://www.circulationaha.org
Committee, blood was drawn for genetic analyses from members of a family with HCM. Family members were evaluated through history, physical examination, and ECG16 and echocardiographic17 assessments. Clinical information on deceased children was obtained from their parents and medical records.

Genetic Analysis

Identification of a Mutation in the Cardiac TnT Gene

Genomic DNA was isolated from peripheral blood samples as described previously.18 Exons 2 through 16 of the cTnT gene were amplified with PCR from 100 ng genomic DNA through the use of primers designed from flanking intron sequences (10 to 15 pmol/primer; sequences are available on the Internet at http://genetics.med.harvard.edu/~seidman). Amplified fragments were purified with the QIAquick PCR Purification kit (QIAGEN). DNA sequences were determined through automated DNA sequencing with the ABI Prism dye-terminator cycle-sequencing kit (Applied Biosystems/Perkin–Elmer Cetus) and compared with the published genomic sequence of the cTnT gene (EMBL accession numbers X98477, X98478, X98479, X98480, X98481, X98482, X98483, Y09626, Y09627, Y09628, and AF00412).

Summary of Clinical Features of Evaluated Family Members

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Date of Birth</th>
<th>Sex</th>
<th>Symptoms</th>
<th>ECG Data</th>
<th>Echocardiographic Dimensions, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LVH</td>
<td>STΔ</td>
</tr>
<tr>
<td>V-1</td>
<td>Unknown</td>
<td>F</td>
<td>Exertional chest pain and dyspnea</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>V-2</td>
<td>5/30/55</td>
<td>F</td>
<td>Exertional chest pain and dyspnea</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>V-3</td>
<td>4/5/50</td>
<td>M</td>
<td>Asymptomatic</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>VI-1</td>
<td>1/4/76</td>
<td>M</td>
<td>Sudden death at age 17 while ambulating</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>VI-3</td>
<td>12/9/78</td>
<td>F</td>
<td>Chest pain, sudden death at age 15 while at rest</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>VI-4</td>
<td>8/30/80</td>
<td>M</td>
<td>Asymptomatic</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>VI-5</td>
<td>8/27/82</td>
<td>M</td>
<td>Sudden death at age 12 during soccer practice</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>VI-6</td>
<td>12/8/84</td>
<td>M</td>
<td>Asymptomatic; AICD placed August 1998</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>VI-7</td>
<td>10/17/87</td>
<td>F</td>
<td>Asymptomatic</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>VI-8</td>
<td>7/27/91</td>
<td>M</td>
<td>Asymptomatic</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

LVH indicates left ventricular hypertrophy; STΔ, ST-segment changes; Q, the presence of Q waves; IVS, thickness of the interventricular septum; PW, thickness of the posterior wall.
A paraffin ribbon containing five 10-μm-thick tissue sections was digested in proteinase K solution (50 mmol/L, Tris-Cl, pH 8.5 at 25°C, 1 mmol/L EDTA, 0.5% Tween 20, proteinase K 200 μg/μL) at 65°C overnight. A slurry (1:1 wt/vol mixture of Chelex 100 [50 to 10 mesh beads; Bio-Rad] in water) was added to remove heavy metal ions, and the mixture was boiled and centrifuged. The isolated DNA solution was used directly for PCR amplification.20

Restriction Enzyme Digest Analyses

Confirmation of the sequence variant in exon 11 was confirmed with modified restriction enzyme digestion.21 A partial XmnI site, created by the point mutation in exon 11, was completed by introducing 2 mismatched nucleotides (underlined) with PCR and primers: F: 5′-GAGGCCCAGAAGAAGAAATTG-3′; and R: 5′-GGACCTGACCTAAAGTCTACCTG-3′.

The resultant 153-bp fragment was digested with XmnI. The presence of the C→T transition at nucleotide residue 77 in exon 11 allows cleavage (yielding a 131-bp fragment), whereas the wild-type allele is not cut.

Results

Family Characteristics

A kindred from Kuwait (Figure 1) was referred to one of the authors (R.D.) for further evaluation and management of HCM after the occurrence of sudden death in 3 children. The clinical features of the studied family members are summarized in the Table. Individual VI-2, the son of V-2 and V-3, died at 1 year of age after a brief febrile illness. In 1993, the 12-year-old son (VI-5) died suddenly during soccer practice. Neither had a postmortem examination, and further clinical information is unavailable. This second death prompted an evaluation of the 6 surviving children: 2 had clinical findings consistent with HCM. Individual VI-3 reported intermittent chest discomfort, and an echocardiogram (primary data not available) showed marked left ventricular hypertrophy; later that same year, she died suddenly at the age of 15 years while conversing with her family. Individual VI-1 was diagnosed with HCM based on ECG (striking voltage in the precordial leads) and echocardiography findings. The latter showed characteristic features of HCM, including marked septal hypertrophy (maximal septal thickness of 25 mm) with reverse septal curvature. A striking degree of right ventricular hypertrophy was also present with right ventricular free wall thickness of ≈18 mm (Figures 2A and 2B). Left ventricular systolic function was preserved, and there was no evidence of dynamic outflow tract obstruction or valvular abnormalities.

In 1993, at the age of 17 years, he died suddenly while ambulating. The children’s mother (individual V-2) and her sister (individual V-1) also had HCM. Limited information was available on individual V-1 (age ≈48 years). She was reported to have mild exertional symptoms, ECG findings of Q waves in leads I and aVL, and evidence of hypertrophy on echocardiography (primary data unavailable). Individual V-2 (age 40 years) reported a long history of mild exertional chest pain and dyspnea. Physical examination and exercise testing were unremarkable. ECG showed left-axis deviation, Q waves in leads I and aVL, and T-wave inversion in lead III. Echocardiography demonstrated mild left ventricular hypertrophy with a maximal wall thickness of 13 mm. She and her husband, V-3, are distantly related via a common great-great-grandparent. He (V-3) was entirely asymptomatic and had an unremarkable physical examination. His ECG showed nondiagnostic Q waves in leads II, III, and aVF. Echocardiographic studies showed normal ventricular dimensions and function.

The 4 remaining children ranged in age from 4 to 14 years. All were asymptomatic and had normal development and unremarkable physical examinations. Echocardiography in
each defined normal cardiac structures and measurements appropriate for age and body surface area. Individual VI-4 (age 14 years) had a normal ECG. Nonspecific ECG findings were present in the 3 other children. Individual VI-6 (age 10 years) had inferior Q waves; VI-7 (age 7 years) had mild left-axis deviation, Q waves, and inverted T waves in lead III; and VI-8 (age 4 years) had inferior Q waves and a biphasic T wave in lead V1. Although these 3 children did not fulfill echocardiographic criteria for HCM,11,17,22 the nonspecific ECG findings in individuals VI-6, VI-7, and VI-8 were tentatively considered indicative of a genetic predisposition for disease.

Genetic Analysis

The high incidence of sudden death in the family and the mild left ventricular hypertrophy evident in the affected mother appeared consistent with clinical features of cTnT gene mutations. Therefore, a strategy of direct automated DNA sequencing (see Methods) of all protein-encoding exons of the cTnT gene was initiated without prior linkage analyses. Samples derived from 2 affected adult family members (V-1 and V-2) were initially studied. In both samples, a single heterozygous sequence variant, cytosine to thymidine, was found at nucleotide 77 in exon 11 (Figures 3A and 3B). This sequence variation is predicted to substitute a phenylalanine for serine at residue 179 (Ser179 Phe). Subsequent analysis of samples from all surviving family members (V-2, V-3, VI-4, VI-6, VI-7, and VI-8) surprisingly demonstrated that both parents (V-2 and V-3) and 3 children (VI-6, VI-7, and VI-8) were heterozygous for the C→T base pair change. Only VI-4 carried the normal sequence on both alleles (Figures 3A and 3B). The presence of this sequence variant was confirmed with allele-specific oligonucleotide hybridization (data not shown), which verified the presence of the transition in all family members except individual VI-4. This sequence variant was not found in >150 normal and unrelated alleles screened in this manner. Given the probable functional consequences of a Ser179 Phe substitution in cTnT, we conclude that the C→T transition is a disease-causing mutation that caused HCM in this family.

Based on the unexpected finding that both parents and 3 of the 4 surviving children were heterozygous, we hypothesized that the 3 children who died suddenly and exhibited striking morphological evidence of HCM were homozygous for the Ser179 Phe cTnT mutation. The discovery of a lymph node biopsy from deceased individual VI-1 made it possible to test this conjecture. DNA was isolated from paraffin-embedded tissue, and cTnT sequences were determined. Both alleles of exon 11 exhibited the C→T transition (Figure 3C), indicating that individual VI-1 was indeed homozygous for this mutation. The finding of homozygosity was confirmed with restriction endonuclease typing (Figure 4).

Discussion

We report that a mutation in cTnT that, when homozygous, causes a severe form of familial HCM. A single-nucleotide change in codon 179, resulting in a serine-to-phenylalanine amino acid substitution, causes mild clinical phenotype in the heterozygous state. In contrast, homozygosity for cTnT Ser179 Phe produced marked biventricular hypertrophy and juvenile lethality. This first description of a homozygous
The cTnT mutation provides new insights into the spectrum of HCM caused by this disease gene.

Examination of the pedigree (Figure 1) revealed a minimum of 7 obligate heterozygotes (I-1 or I-2, II-1, II-3, III-1, III-4, IV-2, and IV-4) and at least 64 other individuals at risk of being a carrier of the mutation. Of these large numbers, there was no other family history of sudden death or heart failure. Of the many relatives outside of the branch studied, only 1 premature death had occurred: a brother of V-3 died in a motor vehicle accident at age 17 years. This family history demonstrates that survival in HCM due to the heterozygous Ser¹⁷⁹Phe mutation is far better than that previously reported with most other cTnT mutations. Previously described malignant cTnT and β-MHC missense mutations were associated with a change in the substituted residue.^{7,8} Therefore, the benign clinical consequences of the heterozygous Ser¹⁷⁹Phe mutation may reflect conservation of charge, although this substitution replaces a polar residue on both chromosomes.

The data presented here support a gene dosage effect for this cTnT mutation, a phenomenon seen in other genetic disorders, such as familial hypercholesterolemia. Homozygous mutations associated with HCM have not been widely reported and have been thought to be potentially lethal. There is 1 prior description in humans of a homozygous β-MHC mutation²³ that was associated with a more severe phenotype than when heterozygous. Nematodes homozygous for the missense MHC mutation <i>unc-54</i> (d) are nonviable,²⁴ and genetically engineered mice homozygous for the malignant β-MHC mutation Arg⁴⁹¹Gln die shortly after birth.²⁵ Homozygosity for Ser¹⁷⁹Phe caused severe morphological abnormalities at an early age, including striking left and right ventricular hypertrophy (Figure 2), as well as sudden death during childhood. Because heterozygosity is associated with a relatively benign clinical phenotype with a seemingly normal life expectancy, we presume that heterozygosity for Ser¹⁷⁹Phe does not have a dramatic impact on protein folding and only mildly perturbs interaction with other components of the thin filament and overall sarcomere function. The severity of the homozygous phenotype suggests that this mutation disrupts an important cTnT function that can be largely complemented by the presence of 1 normal allele.

The precise functional consequences of the Ser¹⁷⁹Phe mutation are difficult to predict. TnT links the troponin complex to tropomyosin and therefore plays a central role in the control of striated muscle contraction by regulating the interaction of thick and thin filaments in response to intracellular calcium concentration. Exon 11 is thought to reside within the putative α-tropomyosin binding domain of TnT,^{26–28} and Ser¹⁷⁹Phe has been highly conserved throughout vertebrate evolution (Figure 3D), suggesting that it may be a critical residue. However, the 3-dimensional structure of cTnT is not known, and detailed structure-function relationships of the thin filament components remain to be elucidated.

The clinical manifestations of disease in this family illustrate the usefulness of determining genetic causes in the management of patients with HCM. The identification of subtle ECG abnormalities in 3 surviving children was interpreted as possible evidence of the prehypertrophic phase of disease. Given the multiple sudden deaths of siblings, these findings caused serious concern in both parents and physicians about each child’s risk for sudden death. Indeed, this issue prompted the implantation of an implantable cardioverter-defibrillator in the second eldest surviving child (individual VI-6). In contrast, genetic studies indicate that these heterozygous children have a vastly reduced estimate of risk. This information should not only alter the clinical management of the surviving children but also provide their parents with more realistic expectations about their future.

Acknowledgments

This work was supported by grants from the Howard Hughes Medical Institutes and the National Institutes of Health (Drs J. and C. Seidman). We are indebted to Hideshi Niimura for invaluable technical advice and to Lars Ericsson for providing clinical information on the children.

References

24. Bejsovec AAP. Functions of the myosin ATP and actin binding sites are required for *C. elegans* thick filament assembly. *Cell*. 1990;60:133–140.

Homozygous Mutation in Cardiac Troponin T: Implications for Hypertrophic Cardiomyopathy
Carolyn Y. Ho, Harry M. Lever, Roman DeSanctis, Carol F. Farver, J. G. Seidman and Christine E. Seidman

doi: 10.1161/01.CIR.102.16.1950

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/102/16/1950

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/