Unilateral Vineberg Arterial Graft With a Patency of 30 Years

Thomas Krabatsch, MD; Onnen Grauhan, MD, PhD; Roland Hetzer, MD, PhD

A 65-year-old patient with severe 3-vessel coronary artery disease was admitted to our institution in October 1999 with increasing angina and dyspnea despite intensive medical therapy. After 2 myocardial infarctions at the age of 34 years, he had undergone a Vineberg operation on October 14, 1969, with implantation of the left internal thoracic artery (ITA) into the anterior wall of the left ventricle without a vascular anastomosis. During this operation, the artery, after distal ligation, was perforated artificially and then implanted into a tunnel 3 cm long and parallel to the left anterior descending coronary artery (LAD). The operative course was uneventful, and for almost 30 years the patient was free of complaint.

Three months before his current admission, he experienced recurrent angina. Coronary angiography revealed severe 3-vessel disease with proximal occlusion of the LAD. The distal LAD was perfused by the implanted left ITA via numerous collaterals (Figure 1). We performed a repeat coronary bypass operation. Special care was taken during sternotomy and dissection of adhesions not to damage the Vineberg graft. The proximal ITA before it entered the myocardium was completely dissected free (Figure 2). Using cardiopulmonary bypass and cardioplegic cardiac arrest, we Anastomosed 2 saphenous vein grafts to the distal LAD and the proximal posterior descending branch of the right coronary artery. There were no suitable target vessels among the branches of the circumflex artery. The postoperative course was completely uneventful, and the patient was discharged home free of angina 14 days later.

In 1945, the Canadian surgeon Arthur Vineberg undertook experiments in dogs in which he dissected the ITA free from the chest wall and, after ligation of its distal end, pulled it into a tunnel created in the superficial myocardium. The hope was that the vessel would arborize and develop communications from within a blunt myocardial tunnel appears to prove the theoretical basis of all methods of “indirect” revascularization, and their usefulness for myocardial perfusion, which is the existence of “sinusoids” within the human, ie, mammalian, heart and their usefulness for myocardial perfusion, which is the theoretical basis of all methods of “indirect” revascularization, including transmyocardial laser revascularization.

The observation of collaterals joining large coronary arteries from within a blunt myocardial tunnel appears to prove the existence of “sinusoids” within the human, ie, mammalian, heart and their usefulness for myocardial perfusion, which is the theoretical basis of all methods of “indirect” revascularization, including transmyocardial laser revascularization.

References
Figure 1. Visualization of distal LAD via collaterals after contrast medium injection into left ITA.

Figure 2. Intraoperative view of dissected ITA pedicle.
Unilateral Vineberg Arterial Graft With a Patency of 30 Years
Thomas Krabatsch, Onnen Grauhan and Roland Hetzer

Circulation. 2000;102:1724-1725
doi: 10.1161/01.CIR.102.14.1724
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/102/14/1724

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/