Regulation of Endothelial Constitutive Nitric Oxide Synthase Gene Expression in Endothelial Cells and In Vivo

A Specific Vascular Action of Insulin

Koji Kuboki, MD; Zhen Y. Jiang, MD, PhD; Noriko Takahara, MD, PhD; Sung Woo Ha, MD, PhD; Masahiko Igarashi, MD, PhD; Teruaki Yamauchi, MD, PhD; Edward P. Feener, PhD; Terrance P. Herbert, MD, PhD; Christopher J. Rhodes, PhD; George L. King, MD

Background—The vasodilatory effect of insulin can be acute or increase with time from 1 to 7 hours, suggesting that insulin may enhance the expression of endothelial nitric oxide synthase (eNOS) in endothelial cells. The objective of the present study was to characterize the extent and signaling pathways by which insulin regulates the expression of eNOS in endothelial cells and vascular tissues.

Methods and Results—Physiological concentrations of insulin (10^{-10} to 10^{-7} mmol/L) increased the levels of eNOS mRNA, protein, and activity by 2-fold after 2 to 8 hours of incubation in cultured bovine aortic endothelial cells. Insulin enhanced eNOS gene expression in microvessels isolated from Zucker lean rats but not from insulin-resistant Zucker fatty rats. Inhibitors of phosphatidylinositol-3 kinase (PI-3 kinase) decreased the effect of insulin on eNOS gene expression, but a general protein kinase C (PKC) inhibitor, GF109203X or PKCβ isoform inhibitor, LY333531 enhanced eNOS expression. In contrast, PKC activators inhibited both the activation by insulin of PI-3 kinase and eNOS mRNA levels. Overexpression of PKCβ isoform in endothelial cells inhibited the stimulation by insulin of eNOS expression and PI-3 kinase activities in parallel.

Conclusions—Insulin can regulate the expression of eNOS gene, mediated by the activation of PI-3 kinase, in endothelial cells and microvessels. Thus, insulin may chronically modulate vascular tone. The activation of PKC in the vascular tissues as in insulin resistance and diabetes may inhibit PI-3 kinase activity and eNOS expression and may lead to endothelial dysfunctions in these pathological states. (Circulation. 2000;101:676-681.)

Key Words: insulin ■ nitric oxide ■ RNA ■ endothelium ■ cells ■ diabetes mellitus ■ proteins

Insulin has multiple physiological effects on the vascular tissues such as vasodilation,1–4 which may be endothelial cell dependent and can be inhibited by inhibitors of nitric oxide synthase (NOS).5–6 Zeng and Quon7 suggested that insulin can increase the production of NO in cultured endothelial cells within a few minutes, indicating an activation of NOS via the insulin receptors. However, the vasodilatory effect of insulin in vivo may have both acute and prolonged actions; Uttriainen et al8 and other researchers2–5 showed that the effect of insulin on forearm blood flow continued to increase even after 6 to 7 hours of infusion. In addition, the concentrations of insulin required to rapidly activate NOS in cultured endothelial cells were much higher than physiological levels.7 These results suggest that insulin could also be increasing the production of NO in vivo by inducing both the expression and the activation of NOS in the endothelial cells.

We investigated the possibility that one mechanism of the vasodilatory effect of insulin is to increase the expression of endothelial NOS (eNOS) in endothelial cells. Although all 3 types of NOS have been reported to be expressed by endothelial cells, eNOS is the most abundant form8 and can be regulated by acetylcholine, hypoxia, sheer stress, lysophosphatidylcholine (LPC), and cytokines.8–11

In the present study, we characterized the effect of insulin on the expression of eNOS both in cultured endothelial cells and in microvessels from lean and insulin-resistant rats. In addition, the signaling pathway and regulation of the action of insulin on eNOS gene expression were studied.

Methods

Cell Culture

Bovine aortic endothelial cells (BAECs) from passages 4 to 10 were isolated and used as described previously.12 Confluent cells were placed in DMEM containing 1% platelet-deprived horse serum (PDHS) for 24 hours before being studied and pretreated with the following inhibitors: phosphatidylinositol-3 (PI-3) kinase–selective inhibitors wortmannin (Sigma Chemical Co)13 and LY29402 (Biomol Research Laboratories).14 protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA) (Sigma Chemical Co), general PKC inhibitor GF109203X (GFX) (Calbiochem-Novabiochem Corp).15 and PKCβ isoform–selective inhibitor...
LY335351 (Lilly Inc.). Cells were then stimulated with insulin (Sigma Chemical Co), recombinant insulin-like growth factor-1 (IGF-1) (Upstate Biotechnology), and LPC (Avanti Polar Lipid) or α-IR3 antibodies (Sigma).

Construction of Replication-Deficient Recombinant AdenoVirus Containing PKCβ2 cDNA

The construction of a replication-deficient recombinant adenovirus for PKCβ2 expression was performed as described previously. Adenovirus-mediated gene transfer to confluent BAECs was performed through a 1-hour adenoviral infection of 10^9 pfu/mL at 37°C in DMEM containing 10% PDHS as described previously. The infected BAECs were then incubated in DMEM containing 1% PDHS for 24 hours, incubated with or without insulin (100 nmol/L) for an additional 6 hours, and harvested. AdV-CMV-PKCβ2- or β-galactosidase (β-Gal)-infected BAECs were assessed for PKC activity and protein expression as described previously.

Isolation of Vascular Stroma From Epididymal Fat Pads of Zucker Rats

Vascular stromas were obtained from the epididymal fat pads of 12-week-old Zucker lean and fatty rats (Harlan Sprague Dawley, Inc). Epididymal fat pads were isolated, minced, and incubated with 0.2% collagenase I for 30 minutes at 37°C. Then, they were fractionated with the use of a Dounce homogenizer and centrifuged at 3000 g for 20 minutes to isolate vessels from adipocytes. Vascular stroma was washed with DMEM containing 0.2% BSA and incubated with DMEM containing 0.2% BSA with or without insulin for 6 hours at 37°C. The purity of the isolated vascular stroma was quantified through immunohistochemical staining with α-smooth muscle actin antibody and through immunoblotting of the stroma with antibodies to smooth muscle cell α-actin. Only preparations that were stained positively in ≥90% of the vessels were used.

RNA Isolation and Northern Blot Analysis

Total RNA from cultured BAECs, PKCβ2-overexpressed BAECs, and vascular stroma from the epididymal fat pads of Zucker rats were isolated according to the manufacturer’s instructions. Briefly, BAECs were harvested and pelleted in PBS containing 1 mmol/L EDTA and centrifuged at 12 000 g for 20 minutes to isolate vessels from adipocytes. Vascular stroma were washed with DMEM containing 0.5% sarcosyl and 0.1 mol/L NaF, and solution D containing 4 mol/L guanidinium thiocyanate, chloroform method with TRI Reagent (Molecular Research Center). Isolation of vascular stromas and vascular stroma from the epididymal fat pads of Zucker rats were isolated according to the guanidinium thiocyanate-phenol-chloroform method with TRI Reagent (Molecular Research Center). Epididymal fat pads were isolated, minced, and incubated with 0.2% collagenase I for 30 minutes at 37°C. Then, they were fractionated with the use of a Dounce homogenizer and centrifuged at 3000 g for 20 minutes to isolate vessels from adipocytes. Vascular stroma was washed with DMEM containing 0.2% BSA and incubated with DMEM containing 0.2% BSA with or without insulin for 6 hours at 37°C. The purity of the isolated vascular stroma was quantified through immunohistochemical staining with α-smooth muscle actin antibody and through immunoblotting of the stroma with antibodies to smooth muscle cell α-actin. Only preparations that were stained positively in ≥90% of the vessels were used.

Immunoblot Analysis of eNOS

Cells were washed 3 times with ice-cold PBS, pH 7.4, lysed in 50 mmol/L Tris, pH 7.5, 2 mmol/L EDTA, 0.5 mmol/L EGTA, 2 mmol/L PMSF, 25 μg/mL leupeptin, 0.1 mg/mL aprotinin, 1 mmol/L diithothreitol, 50 mmol/L NaF, and 1% Triton X-100 (Sigma Chemical Co); scraped from the dish; rotated for 1 hour at 4°C; and centrifuged for 15 minutes at 14 000 g. Protein concentrations of the supernatant were measured according to the method of Bradford and separated with the use of 6% SDS-PAGE as described previously. The membrane was incubated for 1 hour with polyclonal anti-human eNOS antibody (Transduction Laboratories) diluted in PBS containing 0.1% Tween-20 and 1% BSA, washed 3 times for 10 minutes with PBS containing 0.1% Tween-20, and incubated with 0.1 μCi/mL [3H]-ir3 antibodies (kindly provided by Dr Morris F. White, Joslin Diabetes Center, Boston, Mass), which was maintained for 36 hours. The pellets were washed with DMEM containing 10% PDHS as described previously. The amount of NOS activity produced by BAECs was measured by the measurement of NOS activity through the conversion of [3H]L-arginine to [3H]-citrulline. Data were normalized by the amount of protein and reaction time.

Expression of eNOS mRNA responded to insulin (Figure 1B) with a significant increase even at 0.1 nmol/L. At 10 nmol/L insulin, eNOS mRNA level was significantly increased by 50±12%, and a maximum effect of 2-fold was attained at 100 nmol/L. Therefore, stimulation with 100 nmol/L insulin with an incubation time of 6 hours IGF-1 (25 nmol/L) also increased the eNOS mRNA level by 47±10% in human umbilical endothelial cells. The addition of αβ3, an IGF-1 receptor–specific antibody (1 μg/mL), inhibited the effect of IGF-1 by 60% but did not decrease the effect of insulin. Insulin also increased eNOS protein levels at 6 hours by 43±16% and reached a maximum of 2-fold at 24 hours, which was maintained for 36 hours.

Effect of PI-3 Kinase Inhibitors Wortmannin and LY294002 on Expression of eNOS

The acute effect of insulin on NO production in endothelial cells was reported to be inhibited by wortmannin, a PI-3 kinase inhibitor. To determine whether PI-3 kinase activation could be increasing mRNA expression and protein levels of eNOS, 2 structurally different PI-3 kinase inhibitors, wortmannin (100 nmol/L) and LY294002 (50 nmol/L), were preincubated with BAECs before the addition of insulin (100 nmol/L).
Insulin increased the mRNA level of eNOS by 58±20% compared with control, but the effect of insulin was inhibited by preincubation with wortmannin (Figure 2A). Similar to eNOS mRNA levels, insulin significantly increased the eNOS protein level by 74±9%, which was completely inhibited by the addition of wortmannin (Figure 2B).

The pretreatment of BAECs with another PI-3 kinase inhibitor, LY294002 (50 nmol/L), completely inhibited the induction of eNOS mRNA expression by insulin. Unlike wortmannin, LY294002 significantly decreased the basal mRNA expression of eNOS without insulin treatment by 30±4%. Correspondingly, LY294002 inhibited the increases in eNOS protein levels stimulated by insulin and decreased the basal eNOS protein level by 72±5%.

Insulin (100 nmol/L) significantly increased NOS activity from 115±9 to 176±7 pmol·mg protein⁻¹·min⁻¹ after 24 hours (P=0.01, n=6). Preincubation with wortmannin (100 nmol/L) for 15 minutes significantly decreased insulin-induced NOS activity to 123±13 pmol·mg protein⁻¹·min⁻¹, but the basal levels of NOS activity were unchanged.

Effect of PMA on Insulin-Induced eNOS mRNA Expression and PI-3 Kinase Activities

Because PKC activation is observed in the vascular tissue in diabetes and may regulate eNOS in BAECs,12,16,21 the actions of PMA, a PKC agonist, on eNOS expression were studied (Figure 3). In time course experiments, PMA (100 nmol/L) did not change the eNOS mRNA level for the initial 6 hours but significantly increased the expression of eNOS mRNA after 12 and 24 hours of incubation by 66±11% and 105±14%, respectively (Figure 3A). In contrast, when BAECs were preincubated with PMA for 30 minutes, the effect of insulin on eNOS mRNA levels was inhibited (14±13%) (Figure 3B).

Because insulin may increase NO production via activation of PI-3 kinase through the tyrosine phosphorylation of its receptors and IRS,2,23 the effects of PKC activation on the of insulin induction of eNOS expression and PI-3 kinase activity were examined in parallel. Insulin significantly increased

Figure 1. Effect of insulin on expression of eNOS mRNA in BAECs. A, Time course of BAECs cultured to 80% confluence, starved for 24 hours, and stimulated with insulin (100 nmol/L) for times indicated. RNA was isolated from BAECs, and Northern blot analysis was performed with 20 μg of total RNA per lane as described (P<0.05 vs 0 hours, **P<0.01 vs 0 hours). B, Dose response of insulin. Cultured BAECs were incubated with indicated concentrations (Conc.) of insulin for 6 hours, and then eNOS mRNA expression was measured by Northern blot analysis (P<0.05 vs 0 nmol/L, **P<0.01 vs 0 nmol/L). Results were quantified with a PhosphorImager and normalized by levels of 36B4 mRNA expression. Data are mean±SEM of 3 different experiments and expressed as percentage of control.

Figure 2. Effect of wortmannin on insulin-induced eNOS expression in BAECs. A, Effect of eNOS mRNA in BAECs. Cultured BAECs were starved in 1% PDHS for 24 hours, preincubated without (Con.) or with 100 nmol/L wortmannin (Wort.) for 15 minutes, and stimulated with 100 nmol/L insulin for 6 hours. RNA was extracted from BAECs, and expression of eNOS mRNA was analyzed by Northern blot analysis as described. Data were visualized with a PhosphorImager and normalized by levels of 36B4 mRNA expression (P<0.01 vs Con., #P<0.01 vs insulin). B, Effect on protein levels of eNOS. After starvation for 24 hours, cells were pretreated with 100 nmol/L wortmannin for 15 minutes and then stimulated with 100 nmol/L insulin for 24 hours. Aliquots of proteins extracted from BAECs were analyzed by 6% SDS-PAGE, and membranes were blotted with anti-eNOS antibodies, followed by 125I-labeled protein A (P<0.01 vs Con., #P<0.01 vs insulin). Results are quantified with a PhosphorImager, expressed as a percentage of control, and shown as mean±SEM of 6 different experiments.

Figure 3. Effect of PMA on eNOS mRNA expression stimulated with or without insulin in BAECs. A, Time course of PMA-induced eNOS mRNA expression. After BAECs were starved for 24 hours, cells were treated with 100 nmol/L PMA for indicated times (P<0.05 vs 0 hours). B, Effect of PMA on insulin-induced eNOS mRNA expression. Cultured BAECs were starved for 24 hours and treated with 100 nmol/L insulin for 6 hours after pretreatment with or without 100 nmol/L PMA for 30 minutes. Then, 20 μg of total RNA extracted from BAECs was used for Northern blot analysis with 32P-CTP-labeled eNOS probes as described in Methods (P<0.01 vs control [Con.], #P<0.01 vs insulin). Results are expressed as a percentage of control and shown as mean±SEM of 3 different experiments (A) and of 4 different experiments (B).
IRS-2–associated PI-3 kinase activity by 5.4±0.4-fold. When BAECs were preincubated with PMA (100 nmol/L) for 30 minutes, insulin-induced IRS-2–associated PI-3 kinase activity was mostly inhibited. However, the basal PI-3 kinase activity was not changed with PMA treatment.

Effect of PKC Inhibitors on eNOS mRNA Expression

The exposure of BAECs to the PKC inhibitor GFX (5 μmol/L) without insulin for 6 hours increased the expression of eNOS mRNA by 38±10% (Figure 4). The expression of eNOS mRNA was greater in cells exposed to both insulin and GFX (by 76±20% compared with control cells or those incubated with either insulin or GFX alone). We have reported that hyperglycemia may preferentially activate PKCβ isoforms in the vascular cells.16 To explore the possibility that the PKCβ isoform could also have a role in regulation of the activation by insulin of PI-3 kinase and eNOS expression, the effect of LY333531 (20 nmol/L), a PKCβ isoform inhibitor, was characterized.16 The addition of LY333531 also increased eNOS mRNA expression by 60±14%, which is similar to insulin or GFX alone. LY333531 and insulin together did not have a significant additive effect.

Effect of Overexpression of PKCβ Isoform on Insulin-Induced eNOS mRNA Level

To determine directly whether the PKCβ isoform can regulate the effect of insulin on eNOS expression, we overexpressed the PKCβ1 isoform in BAECs through the use of replication-deficient adenovirus containing cDNA of the PKCβ1 isoform. Compared with control cells infected with adenovirus containing the β-Gal gene, cells infected with adenovirus containing the PKCβ1 gene had a 50-fold increase in the protein for the PKCβ1 isoform. Total PKC activities were also increased by 11- and 7-fold in the cytosol and membrane fractions, respectively.

Insulin (100 nmol/L) enhanced eNOS mRNA expression in BAECs with or without infection with adenovirus containing only β-Gal by as much as 2-fold (Figure 5). In contrast, insulin did not increase eNOS mRNA levels in cells infected with adenovirus containing the PKCβ1 isoform. The expression of eNOS was not changed by overexpression of the PKCβ1 isoform (Figure 5) at the basal level. In contrast, LPC (100 μmol/L) increased eNOS mRNA levels by 5- and 4.5-fold in control and adenovirus-containing β-Gal cells, respectively. In BAECs infected with the adenoviral-PKCβ1 isoform, LPC increased eNOS mRNA by 4-fold, which was not significantly different from controls.

Effect of Insulin on eNOS mRNA Level in Vascular Stroma Isolated From Epididymal Fat Pads of Zucker Fatty and Lean Rats

To determine whether insulin can also change eNOS expression in vascular tissue, we characterized eNOS mRNA levels in vascular stroma isolated from Zucker lean and fatty insulin-resistant rats, a model of insulin resistance.23 The expression of eNOS mRNA with or without insulin (100 nmol/L) for 6 hours in the vascular stroma isolated from insulin-resistant models (Zucker fatty rats) showed that the basal levels of eNOS mRNA expression were significantly decreased to 29±5% of vascular stroma derived from Zucker lean rats (Figure 6). The contents of vascular stroma in both preparations were found to be similar through the use of immunostaining with factor VII antibodies and immunoblotting with antibodies to smooth muscle cell α-actin. Moreover, insulin increased eNOS mRNA levels by 50±16% in the vascular stroma from the Zucker lean rats but was ineffective in vascular stroma isolated from the insulin-resistant rats.

Discussion

One of the important vascular actions of insulin is its vasodilatory effect, which is associated with NO production, either from endothelial cells or from perivascular neuronal cells.1–6 The possibility that insulin can enhance the production of NO is supported by the findings that insulin and IGF-1 increased NO production in endothelial cells in <1
Figure 6. Effect of insulin on eNOS mRNA expression in vascular stroma from epididymal fat pads of Zucker fatty rats. Vascular stroma was isolated from epididymal fat pads of Zucker fatty and lean rats as described and incubated with or without 100 nmol/L insulin for 6 hours. Total RNA (20 μg) was used for Northern blot analysis. Results are expressed as a percentage of control and shown as mean ± SEM of 5 different experiments (*P<0.05 vs control [Con.], **P<0.01 vs control in Zucker lean rats).
Because the enhancement of NO production causes vasodilatation and inhibits smooth muscle growth, it is possible that at physiological levels in an insulin-sensitive state, insulin can indirectly have antiatherosclerotic effects. In the presence of hyperglycemia and insulin resistance, which are known to activate PKC and induce the inhibition of PI-3 kinase activities in the vasculatures, the effect of insulin on eNOS expression is blunted, resulting in the loss of its vasodilatory effects. Further studies are necessary to determine whether PKC activities are increased in the insulin-resistant state and whether the use of the inhibitor of the PKCβ isofrom or of specific insulin sensitizers can improve the vascular actions of insulin and endothelial cell dysfunctions.

Acknowledgments

This work was supported by grant NIH DK-53105 and by Diabetes Endocrinology Research Center grant NIH 5-P30-DK-6836.

References

Regulation of Endothelial Constitutive Nitric Oxide Synthase Gene Expression in Endothelial Cells and In Vivo: A Specific Vascular Action of Insulin
Koji Kuboki, Zhen Y. Jiang, Noriko Takahara, Sung Woo Ha, Masahiko Igarashi, Teruaki Yamauchi, Edward P. Feener, Terrance P. Herbert, Christopher J. Rhodes and George L. King

Circulation. 2000;101:676-681
doi: 10.1161/01.CIR.101.6.676

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/101/6/676

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/