Attenuation of Ischemia/Reperfusion Injury by a Caspase Inhibitor

To the Editor:

Yaoita et al. present an interesting study of the attenuation of ischemia/reperfusion injury in rats by Z-Val-Ala-Asp (OMe)-CH$_2$F (ZVAD-fmk), a caspase inhibitor. In a previous study, Gottlieb et al. reported that ZVAD-fmk was an apoptosis inhibitor in a preconditioning rabbit cardiomyocyte model.

Because ZVAD-fmk seemed to exhibit interesting properties in the inhibition of the caspase cascade, we undertook a study to inhibit apoptosis in an animal model.

ZVAD-fmk was directly purchased from the manufacturer (Enzyme Systems Products), and our first step was to check the purity of the compounds. High-performance liquid chromatography was performed on a µC18 column (Hypersil, England) with a mobile phase (ammonium acetate pH 4.4, 0.1 mol · L$^{-1}$/acetonitrile: 40/60) pumping at 0.5 mL/min. Detection was performed with a photodiode array detector (Waters, France) for a 2-hour run. ZVAD-fmk was dissolved in dimethylsulfoxide and diluted with water at 2 mmol/L as recommended by the manufacturer. Three different peaks could be identified during the first 5 minutes, and no other peak in the remaining time. Since the manufacturer claims a 91% purity, we repeated the same experiment with a different lot. Unfortunately, we obtained similar results with a purity <50%. According to the chromatograms sent by the manufacturer from their quality-control record, it seems that their thin-layer chromatography does not have sufficient resolution and therefore is not capable of checking the purity of the compounds.

ZVAD-fmk probably has the interesting biological properties that the 2 cited studies have reported, but the exact identification of the involved compounds remains to be performed. We would advise checking the purity of the compounds as a first step when ZVAD-fmk is used.

Response

Weinmann et al. pointed out that their lots of Z-Val-Ala-Asp(OMe)-CH$_2$F (ZVAD-fluoro-methylketone; ZVAD-fmk) were relatively impure. Our ZVAD-fmk was purchased from the same manufacturer, and we did not check the purity of the compound before use. ZVAD-fmk has been reported to inhibit DNA fragmentation in a variety of cell species at concentrations up to 100 µmol/L. In our previous report, the study was designed to achieve a relatively low circulating concentration of the compound (~20 µmol/L) because it was quite expensive. If the purity of the compound used by us was low, as they suggested, our results may have been obtained with a quite low concentration of the compound.

To confirm the effect of ZVAD-fmk, a dose-response relationship is required, and we determined this (unpublished) using a rat model consisting of a 30-minute coronary occlusion and a 24-hour reperfusion. We used the compound at a dose that was 2-fold higher than in our previous report. Infarct size/risk area on the triphenyl tetrazolium chloride and Evans blue staining and terminal deoxynucleotidyl transferase–mediated dUTP-biotin nick end labeling (TUNEL) positivity of cardiomyocytes within the risk area were 43.9±4.7% and 2.5±1.1%, respectively, with a dose of 6.6 mg/kg (n=4); 52.4±4.0% and 3.1±0.9% with a dose of 3.3 mg/kg (not significant versus 6.6 mg/kg), and 66.6±3.7% and 11.1±1.0% with an inert vehicle (P<0.01 versus 6.6 mg/kg, respectively) (n=8 each). The effect of 6.6 mg/kg ZVAD-fmk was still modest in contrast to the greatest infarct-attenuating effect obtained by preconditioning (5 minutes’ ischemia and 10 minutes’ reperfusion), then 30 minutes’ ischemia followed by 24-hour reperfusion; infarct size/risk area 15.5±0.02%, P<0.01 versus 6.6 and 3.3 mg/kg ZVAD-fmk or vehicle; TUNEL positivity 1.5±0.3%, P<0.01 versus vehicle). Although differences between 6.6 and 3.3 mg/kg were not significant in this small experiment, there was a trend of dose-related infarct-size attenuation.

We appreciate the importance of the suggestions made by Weinmann et al. Depending on the purity of each lot, modification of the dose utilized must be taken into account for the precise assessment of the study.

Pierre Weinmann, MD, PhD
Avicenne University Hospital
Bobigny, France

Alain Meulemans, PhD
Doumit Daou, MD
Dominique Le Guludec, MD, PhD
Bichat University Hospital
Paris, France

Hiroyuki Yaoita, MD
Kazuei Ogawa, MD
Kazuhiro Maehara, MD
Yukio Maruyama, MD
First Department of Internal Medicine
Fukushima Medical University
Fukushima, Japan

Attenuation of Ischemia/Reperfusion Injury by a Caspase Inhibitor
Pierre Weinmann, Alain Meulemans, Doumit Daou and Dominique Le Guludec

Circulation. 2000;101:e75
doi: 10.1161/01.CIR.101.5.e75

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/101/5/e75

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/