Activation of Mitochondrial ATP-Dependent Potassium Channels by Nitric Oxide

Norihito Sasaki, MD, PhD; Toshiaki Sato, MD, PhD; Andreas Ohler, MD; Brian O’Rourke, PhD; Eduardo Marbán, MD, PhD

Background—Nitric oxide (NO) has been implicated as a mediator of “second-window” ischemic preconditioning, and mitochondrial ATP-dependent K⁺ (mitoK\textsubscript{ATP}) channels are the likely effectors. The links between NO and mitoK\textsubscript{ATP} channels are unknown.

Methods and Results—We measured mitochondrial redox potential as an index of mitoK\textsubscript{ATP} channel opening in rabbit ventricular myocytes. The NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP, 0.1 to 1 mmol/L) oxidized the mitochondrial matrix dose-dependently without activating sarcolemmal K\textsubscript{ATP} channels. SNAP-induced oxidation was blocked by the selective mitoK\textsubscript{ATP} channel blocker 5-hydroxydecanoate and by the NO scavenger 2-(4-carboxyphenyl)-4,4′,5,5′-tetramethylimidazole-1-oxyl-3-oxide. SNAP-induced mitochondrial oxidation was detectable either by photomultiplier tube recordings of flavoprotein fluorescence or by confocal imaging. SNAP also enhanced the oxidative effects of diazoxide when both agents were applied together. Exposure to 1 mmol/L 8Br-cGMP failed to mimic the effects of SNAP.

Conclusions—NO directly activates mitoK\textsubscript{ATP} channels and potentiates the ability of diazoxide to open these channels. These results provide novel mechanistic links between NO-induced cardioprotection and mitoK\textsubscript{ATP} channels. (Circulation. 2000;101:439-445.)

Key Words: ischemic preconditioning nitric oxide myocytes mitochondria

Nitric oxide is a key signaling molecule that figures prominently in ischemic preconditioning. NO is generated during the oxidation of l-arginine to citrulline, not only in the cytosol but also in mitochondria. During ischemia, the endogenous production of NO in the heart is increased. It is also common therapeutic practice to administer exogenous nitrates in acute ischemic syndromes, further boosting the concentration of NO. Although NO has been reported to afford cardioprotection from reperfusion injury, the role of NO during the early phase of ischemic preconditioning is controversial. Conversely, several lines of evidence convincingly implicate NO as a mediator of the late phase (second window) of ischemic preconditioning against infarction and stunning. The cardioprotective effects of NO have been explained by several factors, such as microvascular effects, antineutrophil action, induction of stress protein, or modulation of cardiac excitability. Recently, Bernardo et al. reported that delayed ischemic preconditioning is inhibited by 5-hydroxydecanoate (5HD) in the rabbit heart. Because 5HD is a selective blocker of mitochondrial ATP-dependent potassium (mitoK\textsubscript{ATP}) channels in rabbit ventricular cells, the ability of 5HD to abolish second-window protection motivated us to look for possible links between NO and mitoK\textsubscript{ATP} channels.

Methods

The investigation conforms with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH publication 85-23, revised 1985).

Materials

Collagenase (type II) was purchased from Worthington. Diazoxide, 2,4-dinitrophenol (DNP), sodium cyanide (CN), SNAP, and 8-bromo cGMP (8Br-cGMP) were obtained from Sigma Chemical Co. 5HD, pinacidil, and 2-(4-carboxyphenyl)-4,4′,5,5′-tetramethylimidazole-1-oxyl-3-oxide (carboxy-PTIO) were purchased from Research Biochemical International. Diazoxide, SNAP, pinacidil, and carboxy-PTIO were dissolved in DMSO before they were added to experimental solutions. The final concentration of DMSO was <0.1%.

Cell Isolation and Measurement of Mitochondrial Redox State

Rabbit ventricular myocytes were isolated enzymatically from adult rabbit hearts and placed in primary culture as described previously. Experiments were performed over the next day. MitoK\textsubscript{ATP} channel activity was monitored noninvasively by measuring flavoprotein fluorescence as an index of mitochondrial redox state with or without simultaneous whole-cell membrane current recordings (as indicated). Cells were superfused with external solution containing (in mmol/L) NaCl 140, KCl 5, CaCl\textsubscript{2} 1, MgCl\textsubscript{2} 1, and HEPES 10 (pH adjusted to 7.4 with NaOH) at room temperature (~22°C). Endogenous flavoprotein fluorescence was excited for 100 ms every 6 seconds by a xenon arc lamp with a bandpass filter centered at 480 nm. Emitted fluorescence was recorded at 530 nm by a photomul-
tiplier tube and digitized. The redox signal was averaged during the excitation window and calibrated at the end of each experiment by exposure to DNP, which uncouples respiration from ATP synthesis and induces maximal oxidation. Therefore, the values of flavoprotein fluorescence are expressed as a percentage of the DNP-induced fluorescence. Individual myocytes were observed with a ×40 objective to monitor fluorescence 1 cell at a time.

Confocal Imaging of Flavoprotein Fluorescence
Confocal images were obtained with a Diaphot 300 inverted fluorescence microscope with a PCM-2000 confocal scanning attachment (Nikon, Inc). Fluorescence was excited by the 488-nm line of an argon laser, and the emission at 505 to 535 nm was recorded. A time series of images was collected at intervals of 10 seconds, and baseline, diazoxide, SNAP, SNAP+5HD, CN, and DNP images were enhanced by averaging of 7 sequential images having stable mean fluorescence intensities during exposure to each agent. Images were analyzed on a personal computer with the software program Simple32 (Compix, Inc).

Data Analysis
To evaluate the effects of pharmacological agents on flavoprotein fluorescence, the slope of relative change in the fluorescence during drug application was calculated by a least-squares method. The best-fit line is indicated by a dotted line in Figure 1 (A, B, and C), Figure 3 (top), and Figure 4 (A and B). Pooled data are presented as mean±SEM, and the number of cells or experiments is shown as n. Statistical comparison was evaluated by 1-way ANOVA, with a value of $P<0.05$ considered significant.

Electrophysiological Recordings
In some experiments (Figure 3), whole-cell currents and flavoprotein fluorescence were measured simultaneously. The internal pipette solution contained (in mmol/L) potassium glutamate 120, KCl 25, MgCl$_2$ 0.5, K-EGTA 10, HEPES 10, and MgATP 1 (pH adjusted to 7.2 with KOH). Whole-cell currents were elicited every 6 seconds from a holding potential of -80 mV by 2 consecutive steps to -40 mV (for 100 ms) and 0 mV (for 380 ms), and flavoprotein fluorescence was excited during the 100-ms step to -40 mV. To quantify $I_{K,ATP}$, currents at 0 mV were measured 200 ms into the pulse.

Results
Effects of SNAP on mitoK$_{ATP}$ Channels
Figure 1A shows the time course of flavoprotein fluorescence in a cell exposed first to diazoxide, then to SNAP, and finally again to diazoxide. In the first application, diazoxide reversibly oxidized the flavoproteins. Subsequent exposure to SNAP alone gradually increased flavoprotein oxidation with a slope of 0.59%/min. After a 15-minute exposure to SNAP, mitochondrial oxidation persisted even 5 minutes after washout. Although NO has been reported to inhibit respiration,2,19,20 the present changes are in the opposite direction to

![Figure 1](http://circ.ahajournals.org/)

Figure 1. Effects of SNAP on flavoprotein oxidation. A, Time course of flavoprotein fluorescence in a cell exposed twice to diazoxide (DIAZO, 100 μmol/L) with an intervening exposure to SNAP (100 μmol/L). B and C show representative data indicating effects of 5HD (1 mmol/L) on SNAP-induced oxidation. Bars indicate periods when cells were exposed to each drug. Dotted line indicates best fit for changes in flavoprotein fluorescence. D and E, Summarized data for percentage of diazoxide-induced flavoprotein oxidation and latency to mitoK$_{ATP}$ channel activation measured in first [DIAZO(1)] and second exposure after SNAP [DIAZO(2) SNAP]. *$P<0.05$ vs DIAZO(1). F, SNAP-induced flavoprotein oxidation measured in absence (left) and in presence (right) of 1 mmol/L 5HD.
those that would be expected from such an effect (in which case the mitochondrial matrix would have been reduced, as it is with CN\(^{-}\)). Note also that the second exposure to diazoxide after SNAP increased flavoprotein oxidation above the levels reached in the first application, with less of a lag during the second exposure (4 minutes, versus 8 to 9 minutes during the first exposure).

To determine whether mitoK\(_{\text{ATP}}\) channels are involved in SNAP-induced mitochondrial oxidation, we applied 5HD, a selective mitoK\(_{\text{ATP}}\) channel blocker. Figure 1, B and C, shows that 1 mmol/L 5HD reversed (B) or prevented (C) the SNAP-induced flavoprotein oxidation. Figure 1D summarizes the amplitude of diazoxide-induced flavoprotein oxidation during the first [DIAZO(1)] and second exposures to diazoxide after the application of SNAP [DIAZO(2) SNAP]. Pretreatment with SNAP significantly enhanced the effects of diazoxide-induced oxidation; we have previ-ously shown that repeated exposures to diazoxide alone do not produce potentiation. Figure 1E summarizes the latency to mitoK\(_{\text{ATP}}\) channel activation, measured as the time required to increase flavoprotein fluorescence to 20% of its maximal value after washing in diazoxide. The latency was significantly abbreviated during the second exposure to diazoxide after SNAP. Figure 1F summarizes the effects of 5HD on the SNAP-induced fluorescence changes and verifies that 5HD significantly and consistently inhibits SNAP-induced mitochondrial oxidation. These results indicate that SNAP-induced mitochondrial oxidation is mediated by activation of mitoK\(_{\text{ATP}}\) channels.

Effects of SNAP on Flavoprotein Fluorescence Detected by Confocal Imaging

To further confirm the NO-induced activation of mitoK\(_{\text{ATP}}\) channels, the effect of SNAP on flavoprotein fluorescence...
was measured by confocal imaging. Fluorescence was low under control conditions (Figure 2A), but exposure to diazoxide reversibly increased fluorescence (B; washout image in C). Subsequent exposure to SNAP also increased flavoprotein fluorescence (D), but SNAP-induced oxidation was inhibited by additional application of 5HD (E). Images were calibrated at the end of the experiment by exposure to cyanide (F) and DNP (G). The patchy distribution of fluorescence in the confocal images is typical of mitochondria, confirming that NO oxidizes the mitochondrial matrix by activation of mitoK_{ATP} channels.

Effects of SNAP on mitoK_{ATP} and Sarcolemmal K_{ATP} Channels

To test the selectivity of NO on mitoK_{ATP} versus sarcolemmal K_{ATP} channels, we examined the effects of SNAP on flavoprotein fluorescence and whole-cell currents simultaneously. In Figure 3, application of 0.5 mmol/L SNAP without preexposure to diazoxide gradually oxidized the mitochondrial matrix with a slope of 0.78%/min. SNAP-induced oxidation was inhibited by coapplication of 1 mmol/L 5HD. In the continued presence of 5HD, subsequent exposure to 100 μmol/L pinacidil (a mixed mitoK_{ATP}/surface K_{ATP} agonist) failed to induce mitochondrial oxidation. In contrast, Figure 3 (bottom) shows that SNAP had no effect on sarcolemmal K_{ATP} channels, because pinacidil activated sarcolemmal K_{ATP} channels despite the presence of 5HD. These results are representative and reproducible. A 20-minute exposure to SNAP (0.5 mmol/L) had no significant effect on whole-cell current (before, 5.6 ± 6.1 pA versus after, 12.9 ± 4.8 pA at 0 mV, n = 4, P = NS). Nevertheless, in the presence of 1 mmol/L 5HD, a 10-minute exposure to 100 μmol/L pinacidil increased sarcolemmal K_{ATP} current (554.9 ± 82.9 pA at 0 mV, n = 4, P < 0.001 versus before). These results indicate that SNAP selectively activates mitoK_{ATP} channels. Furthermore, Figure 3 demonstrates that SNAP-induced activation of mitoK_{ATP} channels does not require preexposure to diazoxide. Finally, the finding that 5HD suppresses the mitochondrial oxidation induced by pinacidil, but not the agonist effect on I_{K_{ATP}}.

Figure 3. Effects of SNAP on flavoprotein fluorescence and I_{K_{ATP}}. Simultaneous measurement of flavoprotein fluorescence and I_{K_{ATP}}. Top, 0.5 mmol/L SNAP induced flavoprotein oxidation without preexposure to diazoxide. Bars indicate periods when cells were exposed to each drug. Note that 1 mmol/L 5HD inhibited oxidative effects of SNAP and 100 μmol/L pinacidil. Bottom, Time course of whole-cell current measured at 0 mV; pinacidil activated I_{K_{ATP}} even in presence of 5HD.

Figure 4. Changes in flavoprotein oxidation induced by coapplication of carboxy-PTIO (100 μmol/L) with SNAP (100 μmol/L) (A) and 1 mmol/L 8Br-cGMP (B) in a cell twice exposed to diazoxide. C and D summarize data for percentage of diazoxide-induced flavoprotein oxidation and latency of mitoK_{ATP} channel activation measured in first [DIAZO(1)] and second exposure after coapplication of carboxy-PTIO with SNAP [DIAZO(2) SNAP + PTIO]. E and F summarize analogous data for 8Br-cGMP.
demonstrates that 1 mmol/L 5HD is a selective inhibitor of mitoK_{ATP} channels in rabbit ventricular cells. 16,17

Mediation by NO Independent of cGMP
To verify that the SNAP-induced changes are actually mediated by the release of NO, we tested the effects of carboxy-PTIO, an NO scavenger,21 on the SNAP-induced flavoprotein oxidation. Figure 4A shows that coapplication of carboxy-PTIO with SNAP prevented the flavoprotein oxidation (slope <0%/min). Because many (but not all) of the effects of NO occur via a cGMP-dependent pathway,22,23 we tested whether NO-induced activation of mitoK_{ATP} is mimicked by 8Br-cGMP. Figure 4B shows that exposure to this cell-permeable cGMP analogue did not increase flavoprotein oxidation, nor did pretreatment with 8Br-cGMP enhance diazoxide-induced oxidation. The effects of the NO scavenger and 8Br-cGMP were observed reproducibly. Figure 4, C and D, shows that carboxy-PTIO abolished the enhancing effects of SNAP on diazoxide-induced oxidation, confirming that the SNAP-induced change is mediated by release of NO. Figure 4, E and F, summarizes data for 8Br-cGMP, confirming that it fails to mimic the effects of SNAP.

The pooled data in Figure 5 reveal that SNAP significantly increases the slope of percent change in flavoprotein oxidation and that the SNAP-induced effect is inhibited by 5HD and carboxy-PTIO. The inset shows the dose-response relationship between SNAP concentration and flavoprotein oxidation. Taken together with the results in Figure 4, these experiments support the idea that SNAP activates mitoK_{ATP} channels dose-dependently via a direct effect of NO, not mediated by cGMP.

Effects of SNAP in the Presence of Diazoxide
We previously reported that protein kinase C (PKC) activation enhances diazoxide-induced changes without affecting basal flavoprotein fluorescence.16 This finding indicates that the modulation of mitoK_{ATP} by PKC may depend on whether the channels are in the open or closed state when the kinase becomes active. To test for analogous state-dependent changes in the case of NO, we quantified the effects of SNAP on channels that had already been opened by diazoxide. Figure 6A shows that 1 mmol/L SNAP rapidly enhanced diazoxide-induced oxidation when applied after the effect of diazoxide had reached steady state. Note that in this case, the effects of SNAP were reversible. Figure 6C shows that carboxy-PTIO abolished the enhancing effect of SNAP on diazoxide-induced oxidation, and Figure 6E demonstrates that 8Br-cGMP failed to mimic the effects of SNAP on mitoK_{ATP} in the presence of diazoxide. Figure 6, B, D, and F, summarizes data for coapplication of diazoxide with each of several pharmacological agents as indicated. *P<0.05 vs DIAZO.

Discussion
Our data reveal that NO selectively activates mitoK_{ATP} channels but not sarcolemmal K_{ATP} channels. The modulation of mitoK_{ATP} channels by NO is manifested in 2 ways. One is the gradual oxidation induced by NO alone, and the other is potentiation of mitoK_{ATP} channels preopened by diazoxide.
The latter effect resembles that of phorbol esters that turn on PKC and enhance diazoxide-induced oxidation, but unlike NO, phorbol esters alone do not suffice to activate the channels. It is possible that the 2 observations share a common pathway, inasmuch as reactive oxygen species (such as the NO product peroxynitrite) are known to activate PKC,13,24,25 Shinbo and Iijima26 reported that the application of the NO donor NOR-3 increased the open probability of agonist-activated surface KATP channels in cardiac myocytes, whereas NOR-3 had no effect in the absence of channel agonists. We have found that PKC primes ventricular surface KATP channels to open in response to agonists or to metabolic inhibition, but basal activity is unaffected.27,28 These findings again resemble the rapid enhancement of mitoKATP by NO in the presence of diazoxide but differ in the inability of the modulator to alter basal activity. Although the structural relationship between surface and mitoKATP channels is unknown,29 the results suggest that the 2 channels may share regulatory pathways sensitive to NO, as is the case for PKC.16,27,29 In pancreatic β cells, NO has been argued to inhibit glycolysis, leading to a secondary activation of surface KATP channels.30 However, SNAP did not increase whole-cell KATP current in the present study, consistent with the finding that NO alone did not activate single KATP channels in cell-attached mode in guinea pig ventricular myocytes.30 The mitoKATP channel is not especially sensitive to changes in bulk [ATP], remaining closed even at 0.5 mmol/L [ATP].31 Considering these observations, it seems unlikely that the effects of NO on mitoKATP channels reflect inhibition of glycolysis.

Both NO and mitoKATP channels have been implicated in the delayed phase of preconditioning known as the “second window” of protection.11–13 MitoKATP channel opening is cardioprotective during ischemia,17,32 whereas blockade of mitoKATP channels abolishes both classic and second-window protection. The present study establishes NO as an endogenous mitoKATP channel opener that may be able to recruit cardioprotection in the second window. NO may play a particularly prominent role in the second window because of changes in gene expression, notably the upregulation of nitric oxide synthase that occurs within 24 hours of conditioning ischemia. Although the relationships between mitoKATP channel activation and cardioprotection remain elusive, the opening of channels in the inner membrane may dissipate the mitochondrial potential established by the proton pump, perhaps blunting the Ca2+ overload that would otherwise occur as a result of the large driving force for Ca2+ entry into mitochondria during ischemia.16,17 It was recently reported that mitoKATP channel openers release Ca2+ from Ca2+-loaded mitochondria.33 The uncoupling by diazoxide appears to be much gentler than that which can be induced by agents such as DNP; indeed, severe uncoupling should be harmful to myocytes, because energy production is critically reduced. We speculate that NO, functioning as an endogenous mitoKATP channel opener, may titrate the coupling level of the mitochondria to an optimum that blunts mitochondrial calcium overload without significantly undermining ATP synthetic capacity.

Acknowledgments
This study was supported by the NIH (grant R37-HL-36957 to Dr Marbán and ROI-54598 to Dr O'Rourke), a Japan Heart Foundation and Bayer Yakuhin Research Grant Abroad (to Dr Sasaki), a BanYu Fellowship in Lipid Metabolism and Atherosclerosis (to Dr Sato), and the Deutsche Forschungsgemeinschaft (to Dr Ohler).

References
20. Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AHV. Reversible inhibition of cytochrome c oxidase, the terminal

Activation of Mitochondrial ATP-Dependent Potassium Channels by Nitric Oxide
Norihito Sasaki, Toshiaki Sato, Andreas Ohler, Brian O'Rourke and Eduardo Marbán

doi: 10.1161/01.CIR.101.4.439
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/101/4/439

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/