Dopamine as a Novel Antioxidative Agent for Rat Vascular Smooth Muscle Cells Through Dopamine D1-Like Receptors

Kenichi Yasunari, MD; Masakazu Kohno, MD; Hiroaki Kano, MD; Mieko Minami, MD; Junichi Yoshikawa, MD

Background—To elucidate the roles of vascular D1-like receptors in atherosclerosis, the effects of the specific D1-like agonists on platelet-derived growth factor (PDGF)-BB–mediated oxidative stress in vascular smooth muscle cells (VSMCs) were studied.

Methods and Results—Immunohistochemical studies demonstrated the coexistence of D1A and D1B dopamine receptors in VSMCs. Western blotting revealed a band of ≈70 kDa for D1A and D1B dopamine receptors. VSMCs stimulated by PDGF-BB exhibited increased oxidative stress directly measured by flow cytometry. These effects were prevented by dopamine, SKF 38393, or YM 435, and this prevention was reversed by Sch 23390. These effects were blocked by a specific protein kinase A (PKA) inhibitor, N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide (H 89). The PDGF-BB–mediated increase in oxidative stress of VSMCs was significantly suppressed by the indirect phospholipase D (PLD) inhibitor suramin or the specific protein kinase C (PKC) inhibitor calphostin C. Both antisense but neither sense nor scrambled oligonucleotides to D1A and D1B receptors inhibited dopamine-induced suppression of increase in oxidative stress of VSMCs induced by PDGF-BB.

Conclusions—These findings suggest that vascular D1-like receptors (D1A and D1B receptors) inhibit any increase in oxidative stress of VSMCs, possibly through activation of PKA and suppression of PLD and PKC. (Circulation. 2000;101:2302-2308.)

Key Words: catecholamines ■ muscle, smooth ■ atherosclerosis ■ receptors ■ hypertension ■ kidney

Increased oxidative stress in vascular smooth muscle cells (VSMCs) enhances VSMC migration1 and proliferation.2 In fact, intracellular oxidative stress plays an important role in growth factor–mediated signal transduction and VSMC migration.3 In addition, increased migration and proliferation of VSMCs may lead to enhanced atherosclerosis.1 A critical linkage therefore exists among oxidative stress, migration, and atherosclerosis.

At least 5 dopamine receptor subtypes have been cloned from the brain. Types D1A and D1B are D1-like, whereas types D2, D3, and D4 are D2-like.4 Furthermore, D1A receptors have been detected in coronary artery VSMCs,3 and D1-like receptors have been evaluated biochemically.6 We recently demonstrated that D1-like receptors inhibit migration and proliferation of VSMCs, possibly through activation of protein kinase A (PKA) and suppression of protein kinase C (PKC), suggesting that D1-like receptors have an antiatherosclerotic effect.7

The present study was therefore designed to investigate the role of D1-like receptors in platelet-derived growth factor (PDGF)–mediated increase in oxidative stress in VSMCs and to examine the potential therapeutic effect of D1-like receptor agonists on atherosclerosis.

Methods

Cell Culture

VSMCs were grown from explants of 14-week-old normotensive Wistar rat renal arteries. Cells were identified as VSMCs on the basis of their morphological and immunohistochemical characteristics as previously reported.7

Immunohistochemistry

Antibodies against D1A and D1B dopamine receptors were purchased from Calbiochem, Inc. Polyclonal antibodies were raised against 2 synthetic peptide sequences: (1) Ac-M-D-G-T-G-L-V-V-E-R-D-F-S-C-COOH, amino acids (Ac-9 to 21-Cys 22) within the D1A receptor, and (2) L-P-P-G-S-N-G-T-A-Y-C, amino acids (2 to 11-Cys 12) within the D1B receptor.

For light microscopic immunohistochemistry, VSMCs were cultured in slides until confluence. The VSMCs were washed in PBS and then incubated for 30 minutes with 3% normal goat serum and 1% nonfat dry milk in PBS and were incubated overnight at 4°C with one of the following: (1) D1A receptor primary antiserum, (2) D1B receptor antiserum, or (3) preadsorption serum. After washes in PBS, immunostaining was detected with an avidin-biotin immunoperoxidase reaction (Vectastain ABC Kit, Vector Laboratories) and visualized with diaminobenzidine (Fast DAB tablets, Sigma Chemical Co) or the peroxidase chromogen method (AEC Kit, Beomeda Co).

Received October 20, 1999; revision received December 15, 1999; accepted December 22, 1999.

From the First Department of Internal Medicine, Osaka City University Medical School, Osaka, Japan.

Reprint requests to Kenichi Yasunari, MD, First Department of Internal Medicine, Osaka City University Medical School, Osaka 545-8586, Japan.

© 2000 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org
staining detection and visualization with DAB and nickel (black); and D 1B receptor antibody, biotinylated goat anti-rabbit immunoglobulin, immunostaining detection and visualization by AEC (red).

Immunoblotting
Immunoblotting was performed as previously described.7

Migration Assay
Migration of VSMCs was assayed by a modification of a Boyden’s chamber method as previously reported.7

Assay of Intracellular Oxidative Stress
Intracellular oxidative stress levels were measured with carboxydi-chlorofluorescein diacetate bis-acetoxymethyl (AM) ester (Molecular Probes) as previously reported.8

Antisense Oligonucleotides
Phosphothioate-modified oligodeoxynucleotides for the rat D 1A and D 1B receptors were designed as reported9,10 and synthesized and purified by high-performance liquid chromatography by Japan Bio Service Co. D 1A sense and D 1B sense oligodeoxynucleotides are from +1 to +21 of the rat D 1A receptor cDNA and from −12 to +6 of rat D 1B receptor cDNA, respectively, as follows: antisense D 1A receptor, 5′-GGTAGAAGTGTTAGGAGCCAT-3′; sense D 1A receptor, 5′-ATGGCTCCTAACACTTCTACC-3′; scramble D 1A receptor, 5′-ATACCTCAGCCGTGATGGTGAT-3′; antisense D 1B receptor, 5′-CAGCATGTCGCGCTGAGT-3′; sense D 1B receptor, 5′-ACTCAGCGCGACATGCTG-3′; and scramble D 1B receptor, 5′-CTAAAGAGCAGCTTGTTA-3′.

These oligodeoxynucleotides were added to serum-free DMEM 24 hours before the start of PDGF-BB stimulation with transfection by cationic compound; lipofectin reagent (Gibco BRL) and oligonucleotides were effectively taken up by VSMCs.

Statistical Methods
Statistical analysis was performed by ANOVA and Scheffé’s modified t test.11 Values of P<0.05 were considered significant.

Results
Immunohistochemistry
Figure 1A demonstrates the existence of D 1A and D 1B receptors on VSMCs. Double staining demonstrated the coexistence of D 1A and D 1B receptors in the same cells. In VSMCs exposed to preadsorption antisera, no specific staining was observed. Western blotting revealed a band of ~70 kDa (lanes 1 and 3). VSMCs with preadsorbed antisera (lane 2, D 1A preadsorbed; lane 4, D 1B preadsorbed) exhibited nonspecific staining.

Effects of D 1 -Like Receptor Agonists on VSMC Migration Stimulated by PDGF
The effects of the D 1 -like receptor agonists dopamine, SKF 38393, and YM 435 on migration of VSMCs stimulated with 5 ng/mL PDGF-BB for 4 hours are shown in Figure 2. D 1 -like receptor agonists inhibited PDGF-BB–induced VSMC migration.

Effects of D 1 -Like Receptor Agonists on Oxidative Stress Stimulated by PDGF
The effects of dopamine, SKF 38393, and YM 435 on oxidative stress in VSMCs treated with PDGF-BB for 4 hours are shown in Figure 3A. D 1 -like receptor agonists significantly inhibited PDGF-BB–induced increase in oxidative stress. Representative flow cytometry results are shown in Figure 3B.
Inhibition of Effects of Dopamine by D1-Like Antagonist Sch 23390

The specific D1-like antagonist Sch 23390 alone had no effect on oxidative stress (data not shown) but significantly reversed the dopamine-induced decrease in oxidative stress (Figure 3A).

Possible Involvement of PKA in Oxidative Stress in VSMCs Stimulated by PDGF

Forskolin 1 μmol/L or 8-bromo-cAMP 100 μmol/L reduced PDGF-BB–induced increase in oxidative stress (Figure 4A).

Figure 3. Effects of dopamine (DA), SKF 38393, and YM 435 on oxidative stress of VSMCs incubated with PDGF-BB 5 ng/mL in presence or absence of D1-specific antagonist Sch 23390 or PKA-specific antagonist H 89 (A) and representative flow cytometry results (B). Relative mean fluorescence intensity (mean oxidative stress) was measured by flow cytometry as follows: Mean fluorescence intensity = Σ[(fluorescence of each channel) × (cell number of channel)]/total cell number. Values are mean ± SD (n = 8) of a single, representative experiment from among 3 independent experiments. *P < 0.05.

Incubation of VSMCs with a PKA inhibitor, N-(2-[p-bromocinnamyl]amino)ethyl)-5-isoquinolinesulfonamide (H 89) at 10 μmol/L significantly reversed dopamine-mediated suppression of oxidative stress in VSMCs (Figure 3A). Representative flow cytometry results are shown in Figure 4B.

Possible Involvement of PLD and PKC in Oxidative Stress in VSMCs Stimulated by PDGF

A phospholipase D (PLD) inhibitor, suramin 10 μmol/L, and a PKC inhibitor, calphostin C 0.1 μmol/L, each significantly prevented the increase in oxidative stress induced by
PDGF-BB (Figure 4A). Representative flow cytometry results are shown in Figure 4B.

Effects of D\textsubscript{1}-Like Agonists on Phenylephrine- or Angiotensin II–Induced Increase in Oxidative Stress in VSMCs

Dopamine 10 μmol/L prevented migration (Figure 5A) and the increase in oxidative stress (Figure 5B) induced through α\textsubscript{1} or angiotensin II AT\textsubscript{1} receptors. Receptor specificities were confirmed by use of prazosin, a specific α\textsubscript{1}-antagonist, and losartan, a specific angiotensin II AT\textsubscript{1} receptor antagonist.

Inhibition of D\textsubscript{1}-Like Receptor Activation by Antisense Oligonucleotides

Antisense oligonucleotides to both D\textsubscript{1A} and D\textsubscript{1B} receptors at 5 μmol/L inhibited the dopamine-induced suppression of increase in oxidative stress induced by PDGF. However, neither sense nor scrambled oligonucleotides to D\textsubscript{1A} and D\textsubscript{1B} receptors at 5 μmol/L had significant effects (Figure 6).
Discussion

We examined the cellular distribution of the closely related D1A and D1B subtypes of dopamine receptors in VSMCs using subtype-specific antibodies. D1A or D1B staining was observed in cultured VSMCs from renal artery. Double immunostaining experiments revealed that the 2 receptors were frequently coexpressed in single VSMCs from renal artery.

Figure 5. A, Effect of dopamine (DA) on migration of VSMCs stimulated with 10 μmol/L (M) phenylephrine (PE) or 0.1 μmol/L angiotensin II (A II) for 4 hours. Values are mean±SD of 8 replicate measurements in a single representative experiment. B, Effect of dopamine on oxidative stress of cultured VSMCs incubated with phenylephrine 10 μmol/L or angiotensin II 0.1 μmol/L in presence or absence of α1 receptor antagonist prazosin or AT1 receptor antagonist losartan. Oxidative stress was measured by flow cytometry and expressed as mean±SD (n=8) of fluorescence intensity. *P<0.05.

Figure 6. Effects of D1A (A) or D1B (B) receptor antisense (AS), sense (S), and scramble (RS) oligodeoxynucleotides on dopamine-induced prevention of increase in oxidative stress in cultured VSMCs. Both D1A and D1B antisense but neither sense nor scramble oligonucleotides at 5 μg/mL prevented dopamine (DA) 10 μmol/L (M)–mediated inhibition of increase in oxidative stress induced by PDGF-BB (5 ng/mL). Oxidative stress was measured by flow cytometry and expressed as mean±SD (n=8) of fluorescence intensity. *P<0.05.
Effects of Various Concentrations of Dopamine on Migration of and Oxidative Stress in Cultured VSMCs Stimulated With PDGF-BB

<table>
<thead>
<tr>
<th></th>
<th>Migration, Cells/HPF</th>
<th>Oxidative Stress, Arbitrary Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.7±2.4</td>
<td>22.4±2.2</td>
</tr>
<tr>
<td>Control+DA 10 μmol/L</td>
<td>6.2±0.6</td>
<td>NS</td>
</tr>
<tr>
<td>PDGF-BB 5 ng/mL</td>
<td>122.4±10.4</td>
<td>16.0±1.2</td>
</tr>
<tr>
<td>PDGF-BB 5 ng/mL+DA 0.001 μmol/L</td>
<td>118.2±9.6</td>
<td>54.0±4.6</td>
</tr>
<tr>
<td>PDGF-BB 5 ng/mL+DA 0.01 μmol/L</td>
<td>110.2±6.4</td>
<td>51.2±4.8</td>
</tr>
<tr>
<td>PDGF-BB 5 ng/mL+DA 0.025 μmol/L</td>
<td>104.2±4.2</td>
<td>NS</td>
</tr>
<tr>
<td>PDGF-BB 5 ng/mL+DA 0.1 μmol/L</td>
<td>98.4±8.8</td>
<td>NS</td>
</tr>
<tr>
<td>PDGF-BB 5 ng/mL+DA 1 μmol/L</td>
<td>70.4±7.2</td>
<td>50.2±4.2</td>
</tr>
<tr>
<td>PDGF-BB 5 ng/mL+DA 10 μmol/L</td>
<td>50.2±6.2</td>
<td>45.2±3.2</td>
</tr>
</tbody>
</table>

DA indicates dopamine; NS, not significantly different. Migration activities are expressed as the number of cells per high-power field (HPF). Oxidative stress was measured by flow cytometry. Values are given as mean±SD of 8 replicate measurements in a single representative experiment.

*P<0.05.

This study demonstrated that D1-like agonists inhibit oxidative stress in VSMCs stimulated with PDGF-BB through both D1A and D1B receptors (Figures 3 and 6). Dopamine is readily oxidized and therefore has direct radical-scavenging effects. However, the finding that D1A and D1B antisense oligonucleotides and the PKA inhibitor H89 reduced the antioxidative effects of dopamine suggests that the antioxidative effect of dopamine is, at least in part, mediated by a D1-like receptor–mediated pathway. It has been reported that D1-like receptors coupled to adenylate cyclase or near the agonist binding site and that the oxidation of a thiol group of D1-like receptors inhibits their activation. However, dopamine itself activated PKA, which decreased oxidative stress (Figure 4A), suggesting that the dopamine acting at D1-like receptors in this study was not totally oxidized.

Dose-dependent responses to D1-like receptor agonists showed that suppression of VSMC migration and oxidative stress was present at 0.025 μmol/L (Table), which is 25 times higher than the normal plasma concentrations. This concentration is observed in humans in pathophysiological conditions. At present, we have no direct in vivo evidence that dopamine has an impact on atherogenesis. However, functional ablation of the D1A receptor gene produced diastolic hypertension in mice, and pathophysiological levels of dopamine may also decrease blood pressure. Therefore, the blood pressure–lowering effect of dopamine in vivo may affect atherosclerosis in vivo.

We have already demonstrated that PDGF-BB enhances VSMC migration and proliferation through PLD, PKC, and mitogen-activated protein kinase activation. It has been reported that PLD and PKC play important roles in oxidative stress. We examined the effects of inhibitors of PLD or PKC and found that PLD and PKC play important roles in mediating the increased oxidative stress induced by PDGF-BB (Figure 4).

We demonstrated that angiotensin II and phenylephrine increased oxidative stress through AT1 and α1-receptors, respectively. D1-like receptor agonists also prevented the increase in oxidative stress induced by angiotensin II and phenylephrine. Interestingly, dopamine, which is the precursor of norepinephrine, an α1-agonist, antagonizes α1-mediated effects through D1-like receptors, suggesting that dopamine may act in the third peripheral catecholamine system. It is also interesting that dopamine antagonizes angiotensin II, which plays an important role in vascular remodeling, suggesting the possibility of local interaction between dopamine receptors and the renin-angiotensin system. Because activation of D1A receptors in rat juxtaglomerular cells has been reported to increase renin release, this dopamine antagonism of angiotensin II effects may be a feedback mechanism responding to increased renin release.

In conclusion, our findings indicate that D1-like receptor agonists suppress PDGF-BB–mediated increase in oxidative stress through D1A and D1B receptors by activating PKA and suppressing PLD and PKC activities.

Acknowledgments

This study was supported by Yoshitomi Research Foundation and Kimura Memorial Foundation. We thank Atsumi Ohnishi and Yuka Inoshita for excellent technical assistance.

References

Dopamine as a Novel Antioxidative Agent for Rat Vascular Smooth Muscle Cells Through Dopamine D₁-Like Receptors

Kenichi Yasunari, Masakazu Kohno, Hiroaki Kano, Mieko Minami and Junichi Yoshikawa

Circulation. 2000;101:2302-2308
doi: 10.1161/01.CIR.101.19.2302

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/101/19/2302

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/