Elevated HDL Cholesterol Is a Risk Factor for Ischemic Heart Disease in White Women When Caused by a Common Mutation in the Cholesteryl Ester Transfer Protein Gene

Birgit Agerholm-Larsen, MSc, PhD; Børge G. Nordestgaard, MD, DMSc; Rolf Steffensen, MD; Gorm Jensen, MD, DMSc; Anne Tybjærg-Hansen, MD, DMSc

Background—The level of HDL cholesterol is inversely related to the risk of ischemic heart disease.

Methods and Results—In 9168 women and men from a general population and 946 women and men with ischemic heart disease (all white), we tested the hypothesis that the Ile405Val mutation in the cholesteryl ester transfer protein gene (CETP) affects HDL cholesterol levels and the risk of ischemic heart disease. The relative frequencies of Ile/Ile, Ile/Val, and Val/Val carriers were 0.46, 0.43, and 0.11 for both women and men. Women with these 3 genotypes had mean HDL cholesterol levels of 1.68, 1.75, and 1.82 mmol/L, respectively (P<0.001, ANOVA), as well as a significant decrease in the ratio of total to HDL cholesterol (P=0.002, ANOVA). On multiple logistic regression analysis, women not treated with hormone replacement therapy who were heterozygous or homozygous for Val405 had a 1.4-fold (95% CI 1.0 to 1.9) to 2.1-fold (95% CI 1.3 to 3.4) increase in the risk of ischemic heart disease. No significant associations were found in men.

Conclusions—Increased HDL cholesterol levels caused by mutations in CETP are associated with an increased risk of ischemic heart disease in white women. (Circulation. 2000;101:1907-1912.)

Key Words: transfer proteins ■ genetics ■ lipoproteins ■ heart diseases ■ apolipoproteins
The basic characteristics of the subjects have been reported previously.9,11,12

\textbf{CETP Genotype Frequencies}

The relative CETP genotype frequencies in this white Danish general population sample were 0.46 for Ile/Ile, 0.43 for Ile/Val, and 0.11 for Val/Val. These frequencies did not differ significantly from those predicted with the Hardy-Weinberg equilibrium ($P>0.70$, χ^2) and did not differ between women and men ($P=1.00$, χ^2).

\textbf{Lipids, Lipoproteins, and Apolipoproteins as a Function of CETP Genotype}

In the general population sample, there was a stepwise increase in HDL cholesterol levels, apoA-I, and HDL cholesterol/apoA-I ratio from Ile/Ile to Ile/Val to Val/Val in women ($P<0.001$, all ANOVA) but not in men (Table 1). For HDL cholesterol, this pattern was confirmed in the same individuals with the use of levels measured 10 years earlier. With post-hoc tests, both Ile/Val and Val/Val carriers had higher levels of HDL cholesterol, apoA-I, and HDL cholesterol/apoA-I ratio than did female Ile/Ile carriers. Plasma levels of triglycerides, cholesterol, apoB, and Lp(a) were unaffected by Ile405Val genotype.

Furthermore, the relative frequency of subjects heterozygous or homozygous for Val405 increased significantly as a function of HDL cholesterol level in quintiles in women ($P<0.001$, χ^2) but not in men ($P=0.55$, χ^2) (data not shown).

In women, the total cholesterol/HDL cholesterol ratio was highest in noncarriers for Val405, intermediate for heterozygous carriers of Val405, and lowest for homozygous carriers of Val405 ($P=0.002$, ANOVA), whereas this ratio was unaffected by genotype in men ($P=0.56$, ANOVA) (Table 1).

\textbf{Interaction With Other Cardiovascular Risk Factors}

In women, the interaction of CETP genotype with HRT had an affect on HDL cholesterol levels ($P=0.08$): the genotype affected HDL cholesterol levels of premenopausal women ($P=0.005$, ANOVA) and of postmenopausal women who were not treated with HRT ($P<0.001$, ANOVA) but not of postmenopausal women who were treated with HRT ($P=0.80$, ANOVA) (Figure 1). The use of HRT also reduced levels of LDL cholesterol, apoB, and Lp(a) in postmenopausal women (Table 2).

In men, there was an interaction between CETP genotype and plasma triglycerides on HDL cholesterol ($P=0.09$). As suggested in an earlier study of Japanese men,19 the interaction was due to a borderline significantly higher HDL cholesterol level in homozygous VV men compared with IV and II men among those with triglyceride levels of >1.86 mmol/L but not in those with triglyceride levels of <1.86 mmol/L (Figure 1).

\textbf{CETP Genotype and Risk of IHD}

CETP genotype interacted with HRT on IHD risk ($P<0.05$). In premenopausal women and postmenopausal women without HRT, when age was allowed for, the odds ratio (OR) for the risk of IHD for Ile/Ile and Val/Val versus Ile/Ile was 1.21 (95% CI 0.90 to 1.62), and 1.65 (95% CI 1.06 to 2.58), respectively (Figure 2). This was even more pronounced when in addition to age, the analyses allowed for HDL
of genotype on risk of IHD only in women): (1) patients with IHD versus the total general population sample (case-referent design)9,12–14 or (2) subjects in the general population sample with IHD versus those without (cross-sectional design).9,11

In women, the association between carrying the valine allele and an increased risk of IHD was most pronounced in the upper tertiles of LDL, apoB, and Lp(a), whereas the middle and lower tertiles, which included relatively fewer patients, showed similar, although not statistically significant, trends (Figure 3). These results were supported by a lack of interaction between genotype and LDL cholesterol, apoB, or Lp(a) on risk of IHD in women. In men, there was no association between genotype and risk of IHD in tertiles of either LDL, apoB, or Lp(a) (Figure 3), with the exception of an apparently increased risk in heterozygote men in the middle tertile of apoB, suggesting a chance effect.

Discussion

We report that the common Ile405Val mutation in the CETP gene, despite being associated with increased levels of HDL cholesterol, is an independent risk factor for IHD in white women who are not treated with HRT. The evidence is based on genotyping of 10 114 women and men, of whom 1446 had IHD and the control subjects were from a general population sample.

Effect on HDL Cholesterol

Previous studies found that homozygosity for Val405 was associated with increased HDL cholesterol levels in 234 Dutch men,20 in 145 Icelandic men,21 and in 102 Japanese men with hypertriglyceridemia.19 We extended these findings in a large general population sample to demonstrate that HDL cholesterol level increases in both homozygotes and heterozygotes of Val405 in premenopausal women and in postmenopausal women not treated with HRT, whereas in

Figure 1. HDL cholesterol as a function of cholesteryl ester transfer protein (CETP) Ile405Val genotype. Probability values (P) are for ANOVA. *P<0.05, **P<0.01, and ***P<0.001, post hoc tests for 2-genotype comparisons. Individuals who received cholesteryl-lowering treatment were excluded. II indicates subjects homozygous for isoleucine; IV, subjects heterozygous for isoleucine/valine; and VV, subjects homozygous for valine.

TABLE 1. Effect of CETP Ile405Val Genotype in Subjects in the General Population Sample

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ile/Ile</td>
<td>Ile/Val</td>
</tr>
<tr>
<td>No. of individuals</td>
<td>2300</td>
<td>2155</td>
</tr>
<tr>
<td>Age, y</td>
<td>58±0.3</td>
<td>59±0.3</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/L</td>
<td>1.68±0.01</td>
<td>1.75±0.01</td>
</tr>
<tr>
<td>apoAI, mg/dL</td>
<td>149±6</td>
<td>153±6</td>
</tr>
<tr>
<td>apoB, mg/dL</td>
<td>43.3±0.1</td>
<td>43.9±0.1</td>
</tr>
<tr>
<td>Lp(a), mg/dL</td>
<td>6.25±0.3</td>
<td>6.32±0.3</td>
</tr>
</tbody>
</table>

ANOVA indicates 1-way ANOVA for equal variances or Kruskal-Wallis ANOVA for unequal variances. Values are mean±SEM.

Values were obtained at the second examination of the Copenhagen City Heart Study in 1981 through 1983; all other values were obtained at the third examination in 1991 through 1994.

| Values were obtained at the second examination of the Copenhagen City Heart Study in 1981 through 1983; all other values were obtained at the third examination in 1991 through 1994.

*P<0.001, †P<0.05 compared with Ile/Ile, post hoc test.

§P<0.05 compared with Ile/Val, post hoc test.

chol}erol levels in quintiles (OR 1.36, 95% CI 1.00 to 1.83; OR 1.89, 95% CI 1.20 to 2.98) or for HDL cholesterol in quintiles plus a group of known cardiovascular risk factors (OR 1.38, 95% CI 1.01 to 1.90; OR 2.07, 95% CI 1.27 to 3.37). In contrast, in postmenopausal women treated with HRT, there was no effect of genotype on risk of IHD (Figure 2). In men, there was no effect of genotype on risk of IHD (Figure 2).

The effects shown in Figure 2 are based on all subjects with IHD versus all subjects without IHD (case-control design). However, in other study designs that we have previously used, the results or trends were similar (ie, showing an effect of genotype on risk of IHD only in women): (1) patients with IHD versus the total general population sample (case-referent design)9,12–14 or (2) subjects in the general population sample with IHD versus those without (cross-sectional design).9,11

In women, the association between carrying the valine allele and an increased risk of IHD was most pronounced in the upper tertiles of LDL, apoB, and Lp(a), whereas the middle and lower tertiles, which included relatively fewer patients, showed similar, although not statistically significant, trends (Figure 3). These results were supported by a lack of interaction between genotype and LDL cholesterol, apoB, or Lp(a) on risk of IHD in women. In men, there was no association between genotype and risk of IHD in tertiles of either LDL, apoB, or Lp(a) (Figure 3), with the exception of an apparently increased risk in heterozygote men in the middle tertile of apoB, suggesting a chance effect.
hypertriglyceridemic men, only Val/Val homozygosity is associated with increased HDL cholesterol. In accordance with a previous study,\(^2\) we also observed an apoA-I–raising effect of the Val405 allele in women.

Mechanistically, it seems plausible that the Ile405Val mutation in \(\text{CETP}\) will affect levels of HDL cholesterol and apoA-I, the major protein in HDL particles. Complete CETP deficiency as seen in the Japanese leads to massively elevated levels of HDL cholesterol and apoA-I,\(^{2,2}\) and previous studies have demonstrated that the Ile405Val mutation leads to reduced CETP mass and activity in plasma. After HDL particles accept cholesterol from nonliver cells, CETP facilitates the transfer of cholesteryl ester onto triglyceride-rich lipoproteins as part of the reverse cholesterol transport pathway, ultimately leading to cholesterol excretion by the liver.\(^2,3\) When CETP is dysfunctional, cholesterol accumulates in HDL, and the transfer of cholesterol from peripheral cells to the liver is blocked. In accordance with this, our data suggest the presence of both an increased number of HDL particles (elevated HDL cholesterol and apoA-I) and cholesterol enrichment of HDL particles (elevated HDL cholesterol/apoA-I ratio) for both heterozygous and homozygous female carriers of the Ile405Val mutation. Because apoA-I is found only in HDL and chylomicrons,\(^2\) the effects we observed on apoA-I most likely reflect changes in levels of apoA-I in HDL.

In women, the interaction between \(\text{CETP}\) genotype and HRT on HDL cholesterol seems biologically plausible. In accordance with previous studies,\(^2\) HRT raised HDL cholesterol levels in women of Japanese descent and men of Japanese descent with the Asp442Gly mutation in \(\text{CETP}.\)\(^3\) Effect on IHD Risk

The most important novel observation in the present study is the clear codominant pattern of increased risk of IHD from Ile/Ile to Ile/Val to Val/Val in untreated white women. This is supported by similar, but less clear and less significant, results of an earlier study of hypertriglyceridemic men of Japanese descent and of men of Japanese descent with the Asp442Gly mutation in \(\text{CETP}.\)\(^3\)

It is quite likely that a genetic deficiency of CETP caused by mutations like Ile405Val affects IHD risk. CETP is essential in the reverse cholesterol transport pathway, the

TABLE 2. Age-Adjusted Levels of LDL Cholesterol, apoB, and Lp(a) as a Function of Menopausal Status and HRT in Women From the Copenhagen City Heart Study

<table>
<thead>
<tr>
<th></th>
<th>Premenopausal Women</th>
<th>Postmenopausal Women Without HRT (n=3150)</th>
<th>Postmenopausal Women With HRT (n=714)</th>
<th>ANOVA</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL cholesterol, mmol/L</td>
<td>3.03±0.03†</td>
<td>4.21±0.02*</td>
<td>3.65±0.04†</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>apoB, mg/dL</td>
<td>70.7±0.5†</td>
<td>93.9±0.4*</td>
<td>86.1±0.8†</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Lp(a), mg/dL</td>
<td>26.2±0.8†</td>
<td>36.8±0.8*</td>
<td>28.7±1.3†</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

ANOVA indicates 1-way ANOVA for equal variances or Kruskal-Wallis ANOVA for unequal variances. Values are mean±SEM.

Individuals receiving cholesterol-lowering treatment (39 women) were excluded from all analyses. To approach normal distribution, Lp(a) was transformed logarithmically before statistical tests, but untransformed values are shown.

\(\dagger P<0.001\) compared with premenopausal women, post hoc test.

\(* P<0.001\) compared with postmenopausal women without HRT, post hoc test.

Figure 2. OR and 95% CI for risk of IHD by Ile405Val genotype according to logistic regression analysis. Models allowed for (1) age, (2) age and HDL cholesterol level in quintiles, and (3) a group of known cardiovascular risk factors (eg, age, cholesterol, body mass index, lipid-lowering medication, hypertension, diabetes mellitus, and smoking), as well as HDL quintiles. It indicates subjects homozygous for isoleucine; IV, subjects heterozygous for isoleucine/valine; and VV, subjects homozygous for valine.
main route by which the body can eliminate excess cholesterol. Dysfunctional CETP that causes reduced reverse cholesterol transport is reflected as an increase in HDL cholesterol levels, suggesting that cholesterol may also accumulate in the arterial intima, ultimately leading to increased risk of atherosclerosis and IHD.

The effect of the interaction between CETP genotype and HRT on IHD risk may reflect the corresponding effect of the interaction between CETP genotype and HRT on HDL cholesterol levels. If HRT overrides the effect of CETP genotype on HDL cholesterol, it is equally possible that HRT may override the effect of CETP genotype on IHD risk. This apparent cardiovascular protective effect of estrogens in postmenopausal women treated with HRT may also reflect the known effects of HRT to reduce LDL cholesterol, apoB, and Lp(a) concentrations, effects that were also found in the Copenhagen City Heart Study (Table 2).

Sex-Specific Effects

Sex-specific effects of the CETP Ile405Val polymorphism on plasma levels of HDL cholesterol and risk of IHD are interesting but not easy to explain biologically. It is well known, however, that men develop IHD at an earlier age than women and that HDL cholesterol levels are lower in men than in women. A priori, we stratified the data analyses by sex and observed that the effects of the Ile405Val mutation on HDL cholesterol, apoA-I, and IHD risk differed between women and men. In accordance with this, CETP genotype and sex interacted on HDL cholesterol (P=0.001) and apoA-I (P<0.001) but not on IHD risk (P=0.35). Because CETP levels appear to be higher in women than in men and because CETP levels are raised in late pregnancy in parallel with estrogen elevation, although testosterone administration to both women and men does not appear to affect CETP levels, it is not unlikely that the effects of mutations in CETP will influence lipoprotein metabolism and IHD risk differently in women and men.

Although the risk of IHD was increased only modestly at the level of the individual, the Ile405Val mutation may be important for the total risk of IHD in untreated women in the population at large. It can be calculated based on our data that 24% of female IHD risk can be attributed to this mutation in CETP, an attributable risk similar in magnitude to that of a conventional cardiovascular risk factor such as hypertension in our sample. This must be confirmed in other independent studies but nevertheless suggests that genetic variability in CETP may explain a large proportion of the genetic component of IHD risk in the population at large.

In conclusion, our data suggest that increased HDL cholesterol levels caused by mutations in CETP may be associated with an increased risk of IHD in white women and that the clinical use of the ratio of total to HDL cholesterol as a risk indicator may be misleading in persons with CETP mutations.

Acknowledgments

This work was supported by Johann and Hanne Weimann’s Fund, The Danish Heart Foundation, The Danish Medical Research Council, The Danish Research Academy, Copenhagen County, and Chief Physician Johan Boserup and Lise Boserup’s Fund.

References

4. Bruce C, Chouinard RAJ, Tall AR. Plasma lipid transfer proteins, high
1993;34:1255–1274.
A missense mutation in the cholesteryl ester transfer protein gene with
possible dominant effects on plasma high density lipoproteins. J Clin Invest.
Maruhama Y, Mahuchi H, Tall AR. Increased high-density lipoprotein
levels caused by a common cholesteryl-ester transfer protein gene
8. Gudnason V, Kakko S, Nicaud V, Savolainen MJ, Kesaniemi YA,
Tahvanainen E, Humphries SE. Cholesterol ester transfer protein gene
effect on CETP activity and plasma high density lipoprotein in European
9. Agerholm-Larsen B, Nordestgaard BG, Steffensen R, Sørensen TI,
Jensen, G, Tybjærg-Hansen A. ACE gene polymorphism: ischemic heart
disease and longevity in 10,150 individuals: a case-referent and retro-
spective cohort study based on the Copenhagen City Heart Study. Circu-
10. Agerholm-Larsen B, Tybjærg-Hansen A, Frikke-Schmidt R, Grønholdt
ML, Jensen G, Nordestgaard BG. ACE gene polymorphism as a risk
11. Tybjærg-Hansen A, Agerholm-Larsen B, Humphries SE, Abildgaard S,
Schnoor P, Nordestgaard BG. A common mutation (G455→A) in the
beta-fibrinogen promoter is an independent predictor of plasma fibrinogen,
but not of ischemic heart disease: a study of 9,127 individuals based on
the Copenhagen City Heart Study. J Clin Invest. 1997;99:
3034–3039.
Nordestgaard BG. A common substitution (A291Ser) in lipoprotein
lipase is associated with increased risk of ischemic heart disease. J Clin
BG. Association of mutations in the apolipoprotein B gene with hyper-
Tybjærg-Hansen A. Heterozygous lipoprotein lipase deficiency: fre-
quency in the general population, effect on plasma lipid levels, and risk
heterozygosity in cystic fibrosis and susceptibility to asthma. Lancet.
A prospective cardiovascular population study used in genetic epidemi-
ology: the Copenhagen City Heart Study. Scand J Clin Lab Invest Suppl
17. Recommendations of the Task Force of the European Society of Cardi-
394–413.
Release 7.0. Chicago, IL: SPSS, Inc; 1996.
19. Bruce C, Sharp DS, Tall AR. Relationship of HDL and coronary heart
disease to a common amino acid polymorphism in the cholesteryl ester
transfer protein in men with and without hypertriglyceridemia. J Lipid
20. Kuivenhoven JA, de Knijff P, Boer JM, Smalheer HA, Botna GJ, Seidell,
Jc, Kastelein JJ, Pritchard PH. Heterogeneity at the CETP gene locus:
influence on plasma CETP concentrations and HDL cholesterol levels.
21. Gudnason V, Thormar K, Humphries SE. Interaction of the cholesteryl
ester transfer protein 140SV polymorphism with alcohol consumption in
smoking and non-smoking healthy men, and the effect on plasma HDL
22. Yamashita S, Hui DY, Sprecher DL, Matsuzawa Y, Sakai N, Tarui S,
Kaplan D, Wetterau JR, Harmony JA. Total deficiency of plasma cho-
lesteryl ester transfer protein in subjects homozygous and heterozygous
for the intron 14 splicing defect. Biochim Biophys Res Commun.
with complete deficiency of plasma cholesteryl ester transfer protein
24. Matsuenga A, Ariki K, Moriyama K, Handa K, Arakawa F, Nishi K,
Sasaki J, Arakawa K. Detection of a point mutation in cholesteryl ester
transfer protein gene by polymerase chain reaction-mediated site-directed
Ishigami M, Sakai N, Kameda-Takamura K, Matsuzawa Y. Genetic
cholesteryl ester transfer protein deficiency is extremely frequent in the
Omegari area of Japan: marked hyperalphalipoproteinemia caused by
CETP gene mutation is not associated with longevity. Arterioscler
26. Havel RJ, Kane JP. Introduction: structure and metabolism of plasma
Wyngaarden JB, Frederickson DS, eds. The Metabolic and Molecular
1841–1851.
Association of hormone-replacement therapy with various cardiovascular
risk factors in postmenopausal women: the Atherosclerosis Risk in Com-
28. Manolio TA, Furberg CD, Shemanski L, O’Leary DH, Tracy RP, Bush TL.
Associations of postmenopausal estrogen use with cardiovascular
disease and its risk factors in older women: the CHS Collaborative
29. The Writing Group for the PEPI trial. Effects of estrogen or estrogen/
progestin regimens on heart disease risk factors in postmenopausal
women: the Postmenopausal Estrogen/Progestin Interventions (PEPI).
30. Zhong S, Sharp DS, Grove JS, Bruce C, Yano K, Curb JD, Tall AR.
Increased coronary heart disease in Japanese-American men with
mutation in the cholesteryl ester transfer protein gene despite increased
Tall AR, Milne RW. Distribution and concentration of cholesteryl ester
32. Silliman K, Tall AR, Kretchmer N, Forte TM. Unusual high-density
lipoprotein subclass distribution during late pregnancy. Metab Clin Exp.
33. Tan KC, Shiu SW, Pang RW, Kung AW. Effects of testosterone
replacement on HDL subfractions and apolipoprotein A-I containing
34. Buckler HM, McElhone K, Durrington PN, Mackness MI, Ludlam CA,
Wu FCW. The effects of low-dose testosterone treatment on lipid meta-
bolism, clotting factors and ultrasonographic ovarian morphology in
35. Khoury MJ, Beatty TH, Cohen BH. Fundamental epidemiologic concepts
and approaches. In: Kelsey JL, Marmot MG, Stolley PD, Vessey MP, eds.
Fundamentals of Genetic Epidemiology. New York, NY: Oxford Uni-
versity Press; 1993:77–79.
Elevated HDL Cholesterol Is a Risk Factor for Ischemic Heart Disease in White Women When Caused by a Common Mutation in the Cholesteryl Ester Transfer Protein Gene

Birgit Agerholm-Larsen, Børge G. Nordestgaard, Rolf Steffensen, Gorm Jensen and Anne Tybjærg-Hansen

Circulation. 2000;101:1907-1912
doi: 10.1161/01.CIR.101.16.1907

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/101/16/1907

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/