Abnormalities of Cardiac Sympathetic Innervation in Arrhythmogenic Right Ventricular Cardiomyopathy

Quantitative Assessment of Presynaptic Norepinephrine Reuptake and Postsynaptic β-Adrenergic Receptor Density With Positron Emission Tomography

Thomas Wichter, MD; Michael Schäfers, MD; Christopher G. Rhodes, MSc; Martin Borggrefe, MD, FESC; Hartmut Lerch, MD; Adriaan A. Lammertasma, PhD; Flemming Hermansen, MD; Otmar Schober, MD, PhD; Günter Breithardt, MD, FESC, FACC; Paolo G. Camici, MD, FESC, FACC, FRCP

Background—The frequent provocation of ventricular tachycardia by stress or catecholamines and the efficacy of antiarrhythmic drugs with antiadrenergic properties suggest an involvement of the cardiac adrenergic system in arrhythmogenesis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). Previous studies demonstrated abnormalities of the presynaptic uptake-1 assessed by 123I-MIBG—single-photon emission computed tomography.

Methods and Results—This study investigated neuronal reuptake of norepinephrine (uptake-1) and β-adrenergic receptor density in 8 patients with ARVC and 29 age-matched control subjects. All subjects underwent positron emission tomography with the volume of distribution (V_d) of [11C]hydroxyephedrine ([11C-HED]) used to assess presynaptic norepinephrine reuptake, the maximum binding capacity (B_max) of [11C]CGP-12177 ([11C-CGP-12177]) to assess postsynaptic β-adrenergic receptor density, and [15O]H_2O for quantification of myocardial blood flow. Patients with ARVC demonstrated a highly significant global reduction in postsynaptic β-adrenergic receptor density compared with that in control subjects (B_max of [11C-CGP-12177]: 5.9±1.3 vs 10.2±2.9 pmol/g tissue, P=0.0007), whereas the presynaptic uptake-1 tended toward reduction only (V_d of [11C-HED]: 59.1±25.2 vs 71.0±18.8 mL/g tissue, NS). There were no differences in myocardial blood flow between the groups, and plasma norepinephrine was within normal limits in patients and control subjects.

Conclusions—The findings demonstrate a significant reduction of myocardial β-adrenergic receptor density in patients with ARVC. This may result from a secondary downregulation after increased local synaptic norepinephrine levels caused by increased firing rates of the efferent neurons or as the result of impaired presynaptic catecholamine reuptake. These findings give new insights into the pathophysiology of arrhythmogenesis in ARVC, with potential impact on diagnostic evaluation and therapeutic management. (Circulation. 2000;101:1552-1558.)

Key Words: cardiomyopathy ▪ ventricular tachycardia ▪ nervous system, autonomic ▪ receptors, adrenergic, beta ▪ tomography

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is frequent as an underlying disease in young patients with ventricular tachycardia (VT) and sudden death.1-3 These arrhythmias often occur during physical exercise or mental stress and may be provoked by intravenous catecholamine infusion during electrophysiological study (catecholamine sensitivity).4,5 In contrast, ventricular tachyarrhythmias are frequently suppressed by an antiarrhythmic drug regimen with antiadrenergic properties.5,6

The pathophysiological mechanisms of these observations in patients with ARVC are still under investigation. However, the clinical findings suggest an involvement of the cardiac sympathetic nervous system. Recently, abnormalities of the myocardial sympathetic function were demonstrated by reduced presynaptic uptake of [123I]meta-iodobenzylguanidine (123I-MIBG) with the use of single-photon emission computed tomography (SPECT).7

On the basis of these studies, we hypothesized that abnormalities of myocardial sympathetic function are present and may contribute to the arrhythmogenesis in ARVC. Reduced presynaptic uptake of radionuclide tracers may result from increased neuronal firing rates or impaired function of the...
presynaptic norepinephrine transporter (uptake-1). Either condition would result in elevated concentrations of synaptic norepinephrine that could lead to a subsequent downregulation of β-adrenergic receptors on the postsynaptic membranes. To test this hypothesis, we assessed quantitatively the presynaptic uptake-1 and the postsynaptic β-adrenergic receptor density in patients with ARVC with the use of positron emission tomography (PET) with the norepinephrine analogue \([1^{11}C] \)hydroxyephedrine (\(1^{11}C \)-HED) \(^8\) and the β-adrenergic receptor antagonist \(S-[1^{11}C] \)-CGP-12177 (\(1^{11}C \)-CGP-12177).\(^9\)

Methods

Subjects

Study Patients

Eight patients (4 men, 4 women; age 37±8 years, range 26 to 50; median 34 years) with ARVC and documented VT were investigated. ARVC was diagnosed according to the criteria proposed by an international study group on ARVC.\(^10\) The clinical characteristics of the study patients are summarized in Table 1.

Patient Selection

The main exclusion criteria of our study were signs or symptoms of heart failure and a history of treatment with heart failure and a history of treatment with β-blockers or other drugs (including amiodarone) affecting the sympathetic nervous system. Because of the potential influence on tracer uptake and/or metabolism, patients after catheter ablation and those with diabetes mellitus, pulmonary, renal, liver, or autoimmune disease were also excluded from the study. In 1 case (patient 8), an implantable cardioverter-defibrillator had been implanted subjectorally by a transvenous approach. However, there was no interference of the device with the field of view during the PET scans.

Control Groups

For the studies with \(1^{11}C \)-HED and \(^{15}O \)H\(_2\)O, the control group consisted of 10 healthy volunteers (mean age 35±7 years, range 23 to 46, median 33 years). For the \(1^{11}C \)-CGP-12177 scans, a control group of 19 subjects (mean age 44±16 years, range 21 to 65, median 45 years) was investigated. All control subjects had low-risk profiles, normal examination results, resting 12-lead ECGs, and exercise tests. To test this hypothesis, we assessed quantitatively the presynaptic uptake-1 and the postsynaptic sympathetic functions was performed in the same patient on 2 consecutive days. None of the patients or control subjects had previously received β-blockers. All subjects were off medication, smoking, and caffeine-containing drinks for at least 36 hours. Investigations were performed in the nonsedated resting state after fasting for ≥4 hours.

On the first day, PET scanning consisted of a transmission scan, an \(^{15}O \)CO emission scan for blood volume, an \(1^{11}C \)-HED dynamic emission scan for presynaptic uptake-1 function, and an \(^{11}C \)H\(_2\)O dynamic emission scan for resting myocardial blood flow (MBF). On the second day, transmission and \(^{15}O \)CO emission scans were recorded in addition to an \(1^{11}C \)-CGP-12177 dynamic emission scan for the assessment of postsynaptic β-adrenergic receptor density. Cardiac presynaptic and postsynaptic sympathetic function was assessed by dynamic PET (ECAT 931 to 08/12, Siemens/CTI), allowing the simultaneous acquisition of 15 planes. Raw scan data were stored on a MicroVax-II computer (Digital Equipment Corp) and transferred to a SUN workstation for normalization, attenuation correction, and reconstruction. The resulting images were further analyzed as reported previously,\(^11\) with the use of software developed under MatLab mathematical software packages (The MathWorks Inc).

Study Protocol

In patients with ARVC, the measurement of cardiac presynaptic and postsynaptic sympathetic functions was performed in the same patient on 2 consecutive days. None of the patients or control subjects had previously received β-blockers. All subjects were off medication, smoking, and caffeine-containing drinks for at least 36 hours. Investigations were performed in the nonsedated resting state after fasting for ≥4 hours.

On the first day, PET scanning consisted of a transmission scan, a \(^{15}O \)CO emission scan for blood volume, an \(1^{11}C \)-HED dynamic emission scan for presynaptic uptake-1 function, and an \(^{11}C \)H\(_2\)O dynamic emission scan for resting myocardial blood flow (MBF). On the second day, transmission and \(^{15}O \)CO emission scans were recorded in addition to an \(1^{11}C \)-CGP-12177 dynamic emission scan for the assessment of postsynaptic β-adrenergic receptor density. Cardiac presynaptic and postsynaptic sympathetic function was assessed by dynamic PET (ECAT 931 to 08/12, Siemens/CTI), allowing the simultaneous acquisition of 15 planes. Raw scan data were stored on a MicroVax-II computer (Digital Equipment Corp) and transferred to a SUN workstation for normalization, attenuation correction, and reconstruction. The resulting images were further analyzed as reported previously,\(^11\) with the use of software developed under MatLab mathematical software packages (The MathWorks Inc).

TABLE 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age, y</th>
<th>VT</th>
<th>CL, ms</th>
<th>Hx of VT, mo</th>
<th>Syncope</th>
<th>EXERC</th>
<th>ISO</th>
<th>EPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>33</td>
<td>sVT</td>
<td>280</td>
<td>91</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>41</td>
<td>sVT</td>
<td>290</td>
<td>84</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>31</td>
<td>sVT</td>
<td>250</td>
<td>25</td>
<td>±</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>50</td>
<td>sVT</td>
<td>230</td>
<td>145</td>
<td>±</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>44</td>
<td>nsVT</td>
<td>260</td>
<td>135</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>34</td>
<td>nsVT</td>
<td>300</td>
<td>4</td>
<td>±</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>39</td>
<td>sVT</td>
<td>550</td>
<td>234</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>26</td>
<td>sVT</td>
<td>220</td>
<td>39</td>
<td>±</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

Total: 4 M, 4 F, 37±8

Control (n=10): 5 M, 5 F, 35±7

Control (n=19): 13 M, 6 F, 43±15

CL, indicates cycle length; EPS, electrophysiological study; EXERC, exercise tests; Hx of VT, history of arrhythmia; ISO, isoproterenol infusion; ±, presyncope (under Syncope); and VT, ventricular tachycardia (s, sustained; ns, nonsustained).

Informed Consent

All patients and control subjects gave written informed consent to the study protocol, which was approved by the Hammersmith Hospital Research Ethics Committee and the United Kingdom Administration of Radioactive Substances Advisory Committee.

Data Acquisition and Data Analysis

Cardiac presynaptic and postsynaptic sympathetic function was assessed by dynamic PET (ECAT 931 to 08/12, Siemens/CTI), allowing the simultaneous acquisition of 15 planes. Raw scan data were stored on a MicroVax-II computer (Digital Equipment Corp) and transferred to a SUN workstation for normalization, attenuation correction, and reconstruction. The resulting images were further analyzed as reported previously,\(^11\) with the use of software developed under MatLab mathematical software packages (The MathWorks Inc).
scan of 20-minute duration for attenuation correction of subsequent emission data.

Myocardial Blood Volume
A blood volume scan was performed with the inhalation of 15O-labeled carbon monoxide ([15O]CO) delivered through a face mask at a constant rate of 500 mL/min and a radioactive concentration of 3 MBq/mL over 4 minutes. After 1 minute, to allow for tracer equilibration, a 6-minute emission scan was initiated, during which 4 venous blood samples were taken to measure blood radioactivity. Myocardial blood volume (mL/mL of region of interest, ROI) was calculated by relating the regional concentration of radioactivity in the [15O]CO scan to the mean concentration of radioactivity in the blood samples (a value of 1.06 g/mL was assumed for the density of blood). Extravascular tissue volume (Vev, mL tissue/mL ROI) was calculated by subtracting the blood volume image from the normalized transmission scan.15

Myocardial Blood Flow
Resting MBF (in mL ⋅ min⁻¹ ⋅ g⁻¹) was measured after the administration of an inhaled bolus (555 MBq) of [15O]H2O and dynamic emission scanning for 5.5 minutes.14 MBF was calculated with the use of a single compartment model.13,14 The perfusable tissue fraction (tf, mL exchangeable tissue/mL ROI) was obtained from the [15O]H2O scan data and used to correct the 11C-HED scan information for partial volume effects and to calculate the perfusable tissue index (PTI=ψt/ψ0).15

Presynaptic Neuronal Catecholamine Reuptake
Presynaptic neuronal catecholamine reuptake was measured by intravenous administration of the norepinephrine analogue HED labeled with 11C. The uptake of 11C-HED uptake was previously reported to correlate well with the activity of the presynaptic norepinephrine.15 11C-HED was prepared on site by direct N-methylation of metaraminol with [11C]methyliodide in sulfoxide.8 The compound was purified with the use of high-performance liquid chromatography to provide an isotonic buffered aqueous solution for injection with high specific activity, resulting in low injectate levels of HED and precursor (3.25±0.69 and 0.36±0.07 μg, respectively) and a radiochemical purity >99.5%. 11C-HED (350±51 MBq) was infused intravenously over a period of 2 minutes. A dynamic emission scan of 65-minute duration was recorded.

Uptake-1 was assessed by the volume of distribution (Vd) of 11C-HED with the use of a single tissue compartment model and least-squares nonlinear regression to provide rate constants for norepinephrine uptake (K1) and release (k2), where Vd=K1/k2. The arterial input function was obtained from the left atrium for the first 15 minutes after the start of infusion and from the BGO counting system afterward. This was necessary because of the net extraction of tracer from blood in the heated hand in the first phase and the low blood count rate and increasing myocardial spillover into the left atrial ROI later on. The latter part of the BGO curve was used to correct for the spillover of radioactivity into the left atrium. Plasma metabolite concentrations were determined by high-performance liquid chromatography and used with the measured whole blood to plasma ratios to determine the plasma 11C-HED input curves. The resulting values of Vd (mL/mL ROI) were regionally corrected for partial volume and heart motion effects with the use of the measured values of perfused tissue fraction obtained from the MBF scan. To convert Vd from units of mL/mL to mL/g tissue, all values were divided by the density of myocardial tissue (1.04 g/mL tissue).

Postsynaptic β-Adrenergic Receptor Density
The postsynaptic myocardial β-adrenergic receptor density was measured with the use of the 5-enzyme of the nonselective hydrophilic β-adrenergic receptor antagonist CGP-12177 ([4]3-t-butylamino-2'-hydroxypropoxy]-benzimidazol-2- to 1), which was asymmetrically synthesized and labeled with 11C on site.9 Studies evaluating the accuracy and reproducibility of 11C-CGP-12177 and PET for the quantification of β-adrenergic receptor density showed excellent results.16,17 After initial rectilinear, transmission, and blood volume ([15O]CO) scanning, measurement of myocardial

β-adrenergic receptor density was performed according to a modification of the double-injection method previously reported in detail.18,19 During a dynamic emission scan, a first dose of 11C-CGP-12177 with high specific activity (170±10 MBq, 4.2±0.4 μg cold CGP-12177) was infused intravenously over a 2-minute period. Thirty minutes later, a second dose with low specific activity (348±20 MBq, 22.8±2.1 μg cold CGP-12177) was infused over a period of 2 minutes.

β-Adrenergic receptor density was calculated by measurement of the maximal specific binding capacity (Bmax, pmol/g) of the β-adrenergic receptor antagonist 11C-CGP-12177. The 2 sections of the curve corresponding to the slow clearance of tracer from tissue, which represent the dissociation of 11C-CGP-12177 bound to β-adrenergic receptors after each injection, were exponentially extrapolated on the y-axis back to the start of each infusion. Bmax was calculated with the use of a modification of the equation described by Delforge et al18 to take account of the molar content of CGP-12177 in both injections.19 Time-activity curves were corrected for decay and spillover of radioactivity from blood to the myocardium by use of the blood volume image and the blood time-activity curves. Bmax was corrected for the partial volume effect by normalization to the regional values of extravascular tissue volume (Vev, mL tissue/mL ROI) obtained from the blood volume and transmission scans. To convert Bmax from units of pmol/mL tissue to pmol/g tissue, all values were divided by the density of myocardial tissue (1.04 g/mL tissue).

Statistical Analysis
Results are expressed as mean±SD. After testing for the equality of variances (Levene test, SPSS), the Student’s t test was used for the comparison between groups for the values of Vd of 11C-HED, Bmax of 11C-CGP-12177, MBF, tissue indexes, hemodynamic parameters, and plasma catecholamine levels. The coefficient of variation was used to test for regional differences of left ventricular distribution of 11C-HED and 11C-CGP-12177. A value of P=0.05 was considered significant.

Results
The results of presynaptic and postsynaptic sympathetic functions with quantitative PET scanning in patients with ARVC are summarized in Figure 1 and Table 2.

Hemodynamic Parameters
In patients and control subjects, heart rate and blood pressure were normal at baseline and during the scans without significant differences between the groups. A 12-lead ECG recording confirmed the absence of complex ventricular arrhythmias during the PET scans in all patients and control subjects.

Plasma Norepinephrine
In patients with ARVC, plasma norepinephrine concentrations were within normal limits, were not different from the control group (1.23±0.23 vs 1.42±0.71 nmol/L; NS), and remained constant during the scans. There was no correlation between plasma norepinephrine concentrations and presynaptic neuronal catecholamine reuptake (11C-HED) or postsynaptic β-adrenergic receptor density (11C-CGP-12177).

Myocardial Blood Flow
In patients with ARVC, global MBF at rest (1.01±0.25 vs 0.97±0.25 mL ⋅ min⁻¹ ⋅ g tissue⁻¹; NS) and the perfusable tissue index (0.94±0.06 vs 0.94±0.09; NS) were normal and not different when compared with that in control subjects. No regional differences were observed in either group.
Myocardial Sympathetic Function

Global V_d of HED was reduced by 17% in ARVC patients compared with control subjects (59\pm25 vs 71\pm19 mL/g tissue), which was highly significant (P<0.0007). There was no correlation between presynaptic and postsynaptic function in each patient (r=0.39; NS). No statistical differences were detected in regional presynaptic \(^{11}\)C-HED uptake or postsynaptic \(\beta\)-adrenergic receptor density in either group. A clear regional reduction of \(^{11}\)C-HED uptake was present in 4 patients with ARVC (Figure 2).

Discussion

The present study used quantitative PET to further elucidate the nature of previously suggested sympathetic dysinnervation and investigated for the first time in vivo both the presynaptic \(^{11}\)C-HED and postsynaptic \(^{11}\)C-CGP-12177 adrenergic function in patients with ARVC. The results provide clear evidence of abnormal sympathetic myocardial innervation in patients with ARVC and demonstrate a severe and highly significant reduction of postsynaptic \(\beta\)-adrenergic receptor density (B_max of \(^{11}\)C-CGP-12177) that has not been investigated in ARVC before our studies. Although abnormalities of the presynaptic function (V_d of \(^{11}\)C-HED) were not significant in the limited number of patients included in the present study, the results confirm and extend our previous observations by radionuclide studies performed with \(^{123}\)I-MIBG-SPECT, which consistently demonstrated regional reduction of transporter-mediated neuronal catecholamine reuptake (uptake-1) in ARVC.\(^7\)

Potential Mechanisms of Sympathetic Dysinnervation in ARVC

Hypoperfusion

Myocardial hypoperfusion with reduced tracer uptake can be excluded as a mechanism of sympathetic dysinnervation in ARVC because the distribution volume (V_d) for \(^{11}\)C-HED, being the ratio of influx and efflux rates, is independent of changes in MBF. In addition, coronary angiography as well as MBF (\(^{15}\)O\textsubscript{H} \textsubscript{2}O-PET) were normal in all patients with ARVC.

Table 2. Results of the Study

<table>
<thead>
<tr>
<th>Patient</th>
<th>Plasma NE, nmol/L</th>
<th>MBF, mL \cdot min \ensuremath{^{-1}} \cdot g \ensuremath{^{-1}}</th>
<th>PTI, t/V_{ev}</th>
<th>(^{11})C-HED, V_d/t, mL/g</th>
<th>(^{11})C-CGP12177, B_max/V_{ev}, pmol/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95</td>
<td>0.67</td>
<td>1.01</td>
<td>26.6</td>
<td>3.76</td>
</tr>
<tr>
<td>2</td>
<td>1.52</td>
<td>1.14</td>
<td>0.85</td>
<td>70.3</td>
<td>5.53</td>
</tr>
<tr>
<td>3</td>
<td>1.05</td>
<td>0.99</td>
<td>0.98</td>
<td>72.5</td>
<td>7.06</td>
</tr>
<tr>
<td>4</td>
<td>1.10</td>
<td>0.87</td>
<td>0.94</td>
<td>32.0</td>
<td>4.63</td>
</tr>
<tr>
<td>5</td>
<td>1.13</td>
<td>1.17</td>
<td>0.87</td>
<td>69.1</td>
<td>7.45</td>
</tr>
<tr>
<td>6</td>
<td>1.14</td>
<td>0.69</td>
<td>1.03</td>
<td>49.3</td>
<td>6.55</td>
</tr>
<tr>
<td>7</td>
<td>1.54</td>
<td>1.32</td>
<td>0.94</td>
<td>48.6</td>
<td>7.14</td>
</tr>
<tr>
<td>8</td>
<td>1.41</td>
<td>1.24</td>
<td>0.95</td>
<td>104.4</td>
<td>5.45</td>
</tr>
<tr>
<td>9</td>
<td>1.23±0.23</td>
<td>1.01±0.25</td>
<td>0.94±0.06</td>
<td>59.1±25.2</td>
<td>5.9±1.3</td>
</tr>
<tr>
<td>10</td>
<td>1.42±0.71</td>
<td>0.97±0.25</td>
<td>0.94±0.09</td>
<td>71.0±18.8</td>
<td><0.0007</td>
</tr>
</tbody>
</table>

NE indicates norepinephrine; **MBF**, myocardial blood flow; **PTI**, perfusable tissue index; and **HED**, hydroxyephedrine.
Denervation

In ARVC, myocardial atrophy and fibrofatty replacement progresses from the subepicardium toward the subendocardium.1–3 Because sympathetic nerve fibers travel in the subepicardium, localized presynaptic sympathetic denervation may occur early in the course of the disease process before functional abnormalities become apparent.2,7 However, the findings of the present study do not support the presence of such a denervation process underlying sympathetic dysinnervation in ARVC. Analysis of the tracer clearance rate from the myocardium revealed substantially higher blood flow–corrected k_2 values (ie, k_2/MBF) for the 4 subjects who had a reduced V_d for 11C-HED (subjects 1, 4, 6, and 7), whereas this parameter was normal for the 4 subjects with normal or high values of V_d. The blood flow–corrected uptake values (K_1/MBF) were normal for both of these subgroups. These findings strongly support a reduced uptake-1 to release ratio and argue against a loss of neurons. Moreover, the finding of normal values of perfusable tissue index in these patients would not be consistent with an increase in adipose or fibrous tissue.

Increased Sympathetic Activity

High levels of circulating plasma catecholamines have been suggested as a potential mechanism for the diffuse reduction of presynaptic tracer uptake (123I-MIBG, 11C-HED), acceleration of tracer washout, and subsequent downregulation of postsynaptic β-adrenergic receptor density in patients with heart failure or pheochromocytoma.20,21 However, in patients with ARVC, the present study and other reports22 have shown that plasma catecholamines are not elevated. These findings suggest that increased synaptic norepinephrine confined to the heart23 or enhanced myocardial sensitivity to catecholamines rather than elevated plasma levels may be responsible for increased sympathetic activity of the myocardium in ARVC. Increased norepinephrine concentrations in the synaptic cleft may result either from increased presynaptic release (firing rates of efferent sympathetic nerve fibers) or from decreased synaptic clearance (uptake-1) of norepinephrine. Subsequently, this would result in some degree of competitive inhibition of intraneuronal tracer reuptake (V_d for 11C-HED) and in a downregulation of postsynaptic β-adrenergic receptor density (B_{max} for 11C-CGP-12177), thus providing the most convincing hypothesis for sympathetic dysinnervation in ARVC patients as reported in the present study.

Figure 2. Short-axis view of 11C-HED scan of left ventricle in ARVC (top) and control (bottom) subject at apical, mid-ventricular, and basal levels showing regional reduction of tracer uptake in posteroseptal area in ARVC patient.

Figure 3. Hypothetic mechanism of sympathetic dysinnervation in ARVC. Increased release (RE) of norepinephrine (NE) leads to elevated local NE concentrations in synaptic cleft, resulting in competitive inhibition of NE reuptake (UP) and stimulation of postsynaptic β-adrenergic receptors (β-AR). This activates stimulatory G proteins and, subsequently, adenylyl-cyclase (AC). Consequent to this is increase of cAMP, activation of protein kinase A, and subsequent rise in intracellular calcium that may eventually trigger ventricular tachycardia. The fact that this occurs despite β-adrenergic receptor downregulation suggests that NE still may be capable of significantly increasing intracellular cAMP concentration, probably because of changes in β-adrenergic receptor–G-protein–AC pathway.
Recent in vitro studies in adult rat cardiac myocytes reported norepinephrine-stimulated apoptosis mediated by β-adrenergic stimulation of intracellular cAMP and subsequent activation of protein kinase A, which increased calcium influx, thus inducing apoptotic cell death. In patients with ARVC, increased synaptic concentrations of norepinephrine therefore may not only increase the propensity to ventricular tachyarrhythmias but may contribute to the progression of myocardial atrophy mediated by apoptotic cell death, which recently has been discussed as a pathogenetic mechanism in ARVC.

Sympathetic Dysinnervation and Arrhythmogenesis

An imbalance of the sympathetic tone is considered to increase the propensity to develop ventricular arrhythmias in various cardiac diseases and conditions. Increased sympathetic activity with abnormal adrenergic stimulation of the myocardium may result from increased norepinephrine concentrations in the synaptic cleft, which may be modulated by physical exercise or exogenous exposure to catecholamines. This may cause changes of cellular CAMP production and subsequently increase the dispersion of repolarization and enhance the propensity for ventricular tachyarrhythmias. Frequent stimulation of postsynaptic β-adrenergic receptors may subsequently lead to downregulation of β-adrenergic receptor density (Figure 3). These mechanisms may (in part) be reversible by antiadrenergic drugs (β-blockade). Therefore, the results of the present study are in line with previous investigations that proved good clinical efficacy of β-blockers in combination with class-III antiarrhythmic agents for the treatment of ventricular tachyarrhythmias in patients with ARVC.

Study Limitations

Although the number of patients investigated in the present study is small, they represent a carefully selected and well-characterized cohort. The diagnosis of ARVC was made on the basis of detailed noninvasive and invasive investigations, and only patients without previous treatment with β-blockers were included.

Because of the limited spatial resolution of the PET scanner, it was not possible to perform accurate quantitative measurements in the thin right ventricular wall. Improvement of spatial resolution by the use of ECG gating was not possible because quantification of presynaptic and postsynaptic measurements requires dynamic PET scanning with acquisition of short time frames.

Regional abnormalities of presynaptic adrenergic function were not as extensive as previously reported in studies using 123I-MIBG SPECT and were found in only 4 patients with ARVC in the present study. This may be explained by patient selection, which was not based on the results of preceding 123I-MIBG scanning but rather on the absence of previous treatment with antiadrenergic drugs. Additional reasons may include the limited number of patients investigated in the present study and differences in tracer characteristics between 123I-MIBG and 11C-HED.

The catecholamine concentration in the synaptic cleft and the firing activity of the efferent sympathetic nerves were not measured directly. Therefore, although a causal interrelation between high synaptic norepinephrine concentrations and downregulated β-adrenergic receptor density is a probable and suitable explanation, it remains hypothetical.

Conclusions

The results of the present study provide convincing evidence of abnormal sympathetic myocardial innervation in ARVC with significant reduction of postsynaptic β-adrenergic density. These findings not only give new insights in the arrhythmogenesis of ARVC but may have therapeutic implications, because pharmacological interventions resulting in a normalization of synaptic norepinephrine concentrations and postsynaptic β-adrenergic receptor density in the heart might reduce the propensity for ventricular tachyarrhythmias and sudden death in patients with ARVC.

Acknowledgments

This study was supported in part by grants (Wi 1214/1-1, Le 999/1-1) from the Deutsche Forschungsgemeinschaft, Bonn, Germany.

References

Thomas Wichter, Michael Schäfers, Christopher G. Rhodes, Martin Borggreve, Hartmut Lerch, Adriaan A. Lammertsma, Flemming Hermansen, Otmar Schober, Günter Breithardt and Paolo G. Camici

Circulation. 2000;101:1552-1558
doi: 10.1161/01.CIR.101.13.1552
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/101/13/1552

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/