The Effect of Endovascular Irradiation on Platelet Recruitment at Sites of Balloon Angioplasty in Pig Coronary Arteries

Mahomed Y. Salame, MRCP; Stefan Verheye, MD; Stephen P. Mulkey, BS; Nicolas A.F. Chronos, MD; Spencer B. King III, MD; Ian R. Crocker, MD; Keith A. Robinson, PhD

Background—Endovascular irradiation (EI) inhibits balloon-induced neointima formation in animals and is now in clinical trials for restenosis prevention. However, little is known of the effect of EI on vessel thrombogenicity due to delayed arterial healing. We investigated EI effects on platelet recruitment in pig coronary arteries.

Methods and Results—EI was performed using 90Sr/Y at 0 Gray (Gy), 15Gy, or 30Gy at 2 mm after balloon overstretch injury. At 1 day, 1 week, and 1 month, platelet recruitment and thrombus formation were assessed using autologous 111In-oxine-platelet labeling and light and scanning electron microscopy. In balloon-injured nonirradiated vessels, there was complete reendothelialization at 1 month, and platelet recruitment was similar to normal uninjured arteries. In irradiated vessels, scanning electron microscopy showed incomplete reendothelialization at 1 month, and these areas demonstrated attachment of activated platelets. Light microscopy of irradiated coronaries showed adherent partially organized thrombi and incomplete resolution of intramural hemorrhages. There was a significant increase in platelet recruitment at 1 month in arteries receiving EI at 15Gy (5.1±2.8×10⁶, P=0.02) or 30Gy (12.5±9.9×10⁶, P=0.005) compared with nonirradiated controls (2.7±1.5×10⁶); 30Gy was also higher than 15Gy (P=0.05). Platelet recruitment was also increased for 30Gy compared with control at 1 day.

Conclusions—Endovascular irradiation at 15Gy or 30Gy after balloon angioplasty results in incomplete endothelial recovery, impaired resolution of intramural hemorrhage, and a dose-dependent increase in platelet recruitment at 1 month. (Circulation. 2000;101:1087-1090.)

Key Words: balloon angioplasty ■ restenosis ■ radiation ■ blood platelets ■ thrombosis

Restenosis remains the major complication of percutaneous transluminal coronary angioplasty.1,2 Stent implantation initially appeared promising, with rates of around 20% to 30% in so-called “ideal” lesions.3,4 However, with improved stent technology, indications for stenting have broadened, and the restenosis rate has climbed.5-7 More recently, endovascular irradiation (EI) has emerged and progressed into clinical trials.8-11 Although radiation appears to delay postangioplasty arterial healing, little is known about the effects of EI on endothelial recovery or thrombus formation. We investigated the effect of EI on platelet recruitment at various time points after balloon injury in the coronaries of adult pigs.

Methods

All experiments and animal care conformed to National Institutes of Health and American Heart Association guidelines and were approved by the Institutional Animal Care and Use Committee of Emory University. Female and castrated male adult minipigs (Yucatan strain, Lone Star Swine, Seguin, Texas) received balloon overstretch injury of all 3 coronary arteries followed by EI at doses of 15 Gray (Gy) or 30Gy or no EI (0Gy controls), according to constrained randomization. All animals received periprocedural aspirin and heparin but no chronic anticoagulant or antiplatelet agent.

Interventional Procedure

We performed coronary balloon overstretch injury in pigs (balloon-to-artery ratio of 1.2 to 1.3, resulting in medial rupture) followed by β-radiation, as previously described.12 In the case of control animals (no irradiation), sham treatment was performed using the source delivery catheter. Radiation treatment times were 3 minutes and 17 seconds for 15Gy and 6 minutes and 34 seconds for 30Gy based on the dose rate and dose distribution of the 90Sr/Y source train measured by the National Institute of Standards and Technology.

Platelet Labeling and Tissue Processing

At serial time points (1, 7, and 28 days) after catheterization, animals were euthanized 2 hours after reinfusion of autologous 111Indium-oxine-platelet labeling and light and scanning electron microscopy. In balloon-injured nonirradiated vessels, there was complete reendothelialization at 1 month, and platelet recruitment was similar to normal uninjured arteries. In irradiated vessels, scanning electron microscopy showed incomplete reendothelialization at 1 month, and these areas demonstrated attachment of activated platelets. Light microscopy of irradiated coronaries showed adherent partially organized thrombi and incomplete resolution of intramural hemorrhages. There was a significant increase in platelet recruitment at 1 month in arteries receiving EI at 15Gy (5.1±2.8×10⁶, P=0.02) or 30Gy (12.5±9.9×10⁶, P=0.005) compared with nonirradiated controls (2.7±1.5×10⁶); 30Gy was also higher than 15Gy (P=0.05). Platelet recruitment was also increased for 30Gy compared with control at 1 day.

Conclusions—Endovascular irradiation at 15Gy or 30Gy after balloon angioplasty results in incomplete endothelial recovery, impaired resolution of intramural hemorrhage, and a dose-dependent increase in platelet recruitment at 1 month. (Circulation. 2000;101:1087-1090.)

Key Words: balloon angioplasty ■ restenosis ■ radiation ■ blood platelets ■ thrombosis

Received October 20, 1999; revision received December 22, 1999; accepted January 24, 2000.

From the Andreas Grunzti Cardiovascular Center, Department of Medicine (Cardiology) (M.Y.S., S.V., S.B.K.), the Department of Radiation Oncology, Emory University School of Medicine (I.R.C.), and the Atlanta Cardiovascular Research Institute (S.P.M., N.A.F.C., K.A.R.), Atlanta, Ga. Correspondence to Keith A. Robinson, PhD, Atlanta Cardiovascular Research Institute, c/o Cardiology of Georgia, 1996 Cliff Valley Way Suite 200, Atlanta, GA 30329. E-mail krobinson@acri.com

Drs Crocker, King, and Robinson have shareholding and/or consulting relationships with Novoste Corporation, which supplied the radiation delivery system used in this study.

© 2000 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org
Endovascular Irradiation Balloon-Injured Sites in Pig Coronary Arteries After

This study aimed to quantify platelet recruitment in pig coronary arteries treated with endovascular irradiation. Platelet recruitment was measured using autologous 111In-labeling, and the extent of arterial injury was assessed qualitatively. The results showed that irradiation delayed reendothelialization and complete coverage of the arterial surface, with the greatest effect observed at 30 Gy.

Results

Light microscopy demonstrated that all vessels underwent a significant degree of medial rupture at 1 month. Control arteries developed fibrous neointima; thrombus was present at 1 week but resorbed by 1 month (Table 1 and Figure 2). Increased platelet recruitment at 1 month for 15 Gy compared with controls at both 1 day (52.2 ± 35.9 vs. $13.9 \pm 14.5 \times 10^6$, $P=0.005$) and 1 month (12.5 ± 8.9 vs. $2.7 \pm 1.5 \times 10^6$, $P=0.005$), respectively. There was increased platelet recruitment at 1 month for 15 Gy compared with control (5.1 ± 2.8 vs. $2.7 \pm 1.5 \times 10^6$, $P=0.002$) and for 30 Gy compared with 15 Gy (12.5 ± 9.9 vs. $5.1 \pm 2.8 \times 10^6$, $P=0.05$; Table 1 and Figure 2).

Discussion

We evaluated the magnitude of platelet recruitment in pig coronary arteries treated with 3 doses of EI (0 Gy, 15 Gy, and 30 Gy) and at 3 time points (1 day, 1 week, and 1 month) after balloon angioplasty. We also performed morphological assessment of these vessels. A dose of 15 Gy at 2 mm from the source-center was used because it was within the range of doses used for clinical studies, whereas 30 Gy was included to help define dose ranges for biological effects.

Light microscopy demonstrated endovascular irradiation at 15 Gy or 30 Gy resulted in delayed reendothelialization and incomplete resolution of intramural hemorrhages. This provides support for the concept that radiation delays healing after arterial injury. Mural thrombi were inspissated and showed minimal organization in sections from irradiated vessels with superimposed fresh platelet-rich thrombi. SEM confirmed irradiated arteries were not reendothelialized at 1 month in contrast to controls. The non-reendothelialized areas displayed abundant adherent dendritic platelets and leukocytes.

For quantification of platelet recruitment, we used autologous 111In-oxine platelet labeling, a method applied extensively for studies of arterial thrombosis, including pig arteries.

Table 1. Cross-Sectional Area of Vessels, Intima, and Intimal Thrombus, as Well as Medial Fracture Length at 1 Week and 1 Month

<table>
<thead>
<tr>
<th>Treatment Groups</th>
<th>Time</th>
<th>Vessel Area, mm²</th>
<th>Intima Area, mm²</th>
<th>Intimal Thrombus Area, mm²</th>
<th>Medial Fracture Length, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Gy</td>
<td>1 week</td>
<td>3.01±0.75</td>
<td>0.52±0.23</td>
<td>0.25±0.07</td>
<td>2.2±0.9</td>
</tr>
<tr>
<td></td>
<td>1 month</td>
<td>3.39±2.1</td>
<td>1.85±1.98</td>
<td>0.01±0.01*</td>
<td>2.2±1.7</td>
</tr>
<tr>
<td>15 Gy</td>
<td>1 week</td>
<td>3.66±1.15</td>
<td>0.26±0.12</td>
<td>0.08±0.02</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>1 month</td>
<td>2.32±0.85</td>
<td>0.36±0.30</td>
<td>0.38±0.38</td>
<td>2.5±2.5</td>
</tr>
<tr>
<td>30 Gy</td>
<td>1 week</td>
<td>3.36±1.66</td>
<td>0.43±0.17</td>
<td>0.41±0.24</td>
<td>2.1±1.1</td>
</tr>
<tr>
<td></td>
<td>1 month</td>
<td>4.31±1.17</td>
<td>1.68±2.38</td>
<td>1.07±1.34**</td>
<td>3.1±1.3</td>
</tr>
</tbody>
</table>

*P<0.005 compared with 0 Gy at 1 week.

Table 2. Platelet Recruitment ($\times 10^6$/Vessel) at Balloon-Injured Sites in Pig Coronary Arteries After Endovascular Irradiation

<table>
<thead>
<tr>
<th>Treatment Groups</th>
<th>1 Day</th>
<th>1 Week</th>
<th>1 Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Gy</td>
<td>13.9±14.5</td>
<td>8.8±6.5</td>
<td>2.7±1.5</td>
</tr>
<tr>
<td>15 Gy</td>
<td>12.5±7.6</td>
<td>15.7±25.9</td>
<td>5.1±2.8</td>
</tr>
<tr>
<td>30 Gy</td>
<td>52.2±35.9</td>
<td>18.8±20.2</td>
<td>12.5±9.9</td>
</tr>
</tbody>
</table>
Figure 1. SEM of pig coronary arteries fixed 1 month after balloon angioplasty with or without EI. Left-hand panels, low-magnification survey micrographs; right-hand panels, higher magnification images. a and b, control; c and d, 15 Gy; e and f, 30 Gy. Note recovery of luminal surface with confluent endothelial-like cells in control but lack of re-endothelialization and adherent activated platelets and leukocytes in irradiated vessels.
Limitations
This study was performed using an animal preparation that mimics some but not all features of coronary angioplasty in the clinical environment, so these findings cannot be used to directly predict responses in that setting.

Acknowledgments
The authors thank Richard A. Hilligass, Jon Lampkin, and Dr Jianhua Cui for assistance in performing animal experiments; Jill McCullers for help with the manuscript preparation; Dr Robert Apkarian for help with SEM; and Dr Stephen R. Hanson for advice and assistance with platelet labeling procedures. This study was supported by grant No. 1-RO1-HL60184-01 from the National Heart, Lung, and Blood Institute (K.A.R.) and by gifts from the Rich Foundation, Atlanta, GA.

References

Figure 2. Platelet recruitment in pig coronary arteries 1 month after balloon angioplasty with or without endovascular irradiation.

Coronary arteries. The labeled platelet population remains functionally normal after reinjection. Although variation between vessels existed within individual animals in the present study, ANOVA revealed that radiation increased platelet recruitment (P=0.002). A dose-response effect of irradiation on recruitment at 1 month was seen (0Gy<15Gy<30Gy). Importantly, the clinically relevant dose (15Gy) was associated with a doubling of platelet recruitment at this time point compared with controls. The level of recruitment in the control group was 2.7±1.5, similar to normal nonirradiated nonballoon-injured arteries (2.9±0.8).

These data, in concert with the correlative microscopic observations, demonstrate a profound influence of endovascular irradiation in delaying arterial healing and reendothelialization after angioplasty and thereby promote luminal surface thrombogenicity. Although these are interim results in an animal preparation without chronic antiplatelet therapy, they document the potential for thrombosis in this setting. These results suggest that aggressive and prolonged antiplatelet therapy may be helpful in endovascular irradiation for restenosis prevention. This is further substantiated by the appearance of late thrombotic occlusion in recent clinical trials of intracoronary brachytherapy.
The Effect of Endovascular Irradiation on Platelet Recruitment at Sites of Balloon Angioplasty in Pig Coronary Arteries

Circulation. 2000;101:1087-1090
doi: 10.1161/01.CIR.101.10.1087

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/101/10/1087

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/